Liquidity Dynamics in RFQ Markets and Impact on Pricing (2024)

Philippe Bergault111Université Paris Dauphine-PSL, Ceremade, 75116 Paris, France, bergault@ceremade.dauphine.fr.  Olivier Guéant222Université Paris 1 Panthéon-Sorbonne, UFR 27 Mathématiques et Informatique, CNRS, Centre d’Economie de la Sorbonne, Paris, France, olivier.gueant@univ-paris1.fr.

Abstract

To assign a value to a portfolio, it is common to use Mark-to-Market prices. However, how should one proceed when the securities are illiquid? When transaction prices are scarce, how can one use all the available real-time information? In this article, we address these questions for over-the-counter (OTC) markets based on requests for quotes (RFQs). We extend the concept of micro-price, which was recently introduced for assets exchanged through limit order books in the market microstructure literature, and incorporate ideas from the recent literature on OTC market making. To account for liquidity imbalances in RFQ markets, we use an approach based on bidimensional Markov-modulated Poisson processes. Beyond extending the concept of micro-price to RFQ markets, we introduce the new concept of Fair Transfer Price. Our concepts of price can be used to value securities fairly, even when the market is relatively illiquid and/or tends to be one-sided.

Key words: fair price, imbalance, liquidity, market making, RFQ markets.

1 Introduction

We are all used to seeing real-time stock prices scrolling on TV or blinking on our computer and cellphone screens. However, we seldom ask ourselves what these prices actually represent or should represent. Do they correspond to the prices of the last trades? Are they some form of mid-prices? From which exchange(s) or venue(s) do they come? In fact, the very notion of real-time prices raises many questions.

For liquid securities traded through limit order books (LOBs), a wide variety of real-time price concepts have been proposed under different names such as mid-price, efficient price, fair price, micro-price, and so on. Each of these concepts comes with its own desired or undesired properties.

The first notion that naturally arises in the case of LOBs is that of the mid-price Sb+Sa2superscript𝑆𝑏superscript𝑆𝑎2\frac{S^{b}+S^{a}}{2}divide start_ARG italic_S start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + italic_S start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG, where Sbsuperscript𝑆𝑏S^{b}italic_S start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT is the best bid price and Sasuperscript𝑆𝑎S^{a}italic_S start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT is the best offer or ask price. This notion is simple but suffers from several limitations. If we consider that a good notion of price should result from a nowcasting procedure, the above notion of mid-price does not use all the available information in the LOB, particularly the available volumes. Additionally, it evolves discontinuously and may suffer from a form of bid-ask bounce when limits are depleted by trades (though a less severe form of bid-ask bounce than in the case of last trade prices). Moreover, if an asset can be traded on several venues, the mid-price ceases to be defined unambiguously: it could be defined, for instance, as the mid-price on the main venue or as the average between the best bid prices across venues and the best ask prices across venues. Questions also arise when prices are not reliable because orders are not firm due to last look practices (a typical feature in foreign exchange markets, see[29]). Despite these problems, mid-prices are widely used and are adequate for many applications.

The most famous extension of mid-price is that of the weighted mid-price (also called imbalance-based mid-price) defined asVaVb+VaSb+VbVb+VaSasuperscript𝑉𝑎superscript𝑉𝑏superscript𝑉𝑎superscript𝑆𝑏superscript𝑉𝑏superscript𝑉𝑏superscript𝑉𝑎superscript𝑆𝑎\frac{V^{a}}{V^{b}+V^{a}}S^{b}+\frac{V^{b}}{V^{b}+V^{a}}S^{a}divide start_ARG italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG italic_S start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + divide start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG italic_S start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPTwhere Vbsuperscript𝑉𝑏V^{b}italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Vasuperscript𝑉𝑎V^{a}italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are the volumes available in the LOB at the best bid and best ask prices respectively. This weighted mid-price is related to the saying “the price is where the volume is not” (see [14]) that has inspired a lot of the approaches discussed below. Although it suffers from numerous flaws (discontinuity, counterintuitive sensitivity to price improvement in some cases, excessive noise, etc.) this weighted mid-price is widely used. It is indeed attractive since the imbalance between the volumes posted at the best bid and at the best ask is known to be a good predictor of the price of the next trade or of the next (mid-)price move. One can cite [19] for an empirical study, [12] for a simple expression of the probability of an upward move conditional on these volumes in a simple Markovian model for the dynamics of a limit order book, and [9] for an example of use of volume imbalance in trading strategies.

Measures of imbalance based on Vbsuperscript𝑉𝑏V^{b}italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Vasuperscript𝑉𝑎V^{a}italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT just have to be monotone in Vb/Vasuperscript𝑉𝑏superscript𝑉𝑎V^{b}/V^{a}italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT / italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and can therefore take a variety of forms. In an attempt to generalize the price formation model of [27] to large-tick assets, Bonart and Lillo proposed in [8] an extension of the above weighted mid-price in which they replaced volumes at the best limits by their squares,333To account for make-take fees on some platforms, they also propose to replace bid and ask prices in the formulas by rebate-adjusted prices. i.e.,Va2Vb2+Va2Sb+Vb2Vb2+Va2Sa.superscriptsuperscript𝑉𝑎2superscriptsuperscript𝑉𝑏2superscriptsuperscript𝑉𝑎2superscript𝑆𝑏superscriptsuperscript𝑉𝑏2superscriptsuperscript𝑉𝑏2superscriptsuperscript𝑉𝑎2superscript𝑆𝑎\frac{{V^{a}}^{2}}{{V^{b}}^{2}+{V^{a}}^{2}}S^{b}+\frac{{V^{b}}^{2}}{{V^{b}}^{2%}+{V^{a}}^{2}}S^{a}.divide start_ARG italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_S start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + divide start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_V start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_V start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_S start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT .They argue, based on theoretical and empirical grounds, that the quadratic version is preferable to the linear one, especially for assets with bid-ask spreads (almost always) equal to one tick – so-called large-tick assets.

Many other notions of mid-price can be proposed along the above lines. One can indeed easily extend the above definitions beyond top-of-book prices and volumes, or consider several venues. Another commonly seen method consists in regressing signed cumulated volumes in the LOB on prices and defining an extended mid-price as the intersection between the regression line and the price axis. In all cases, these notions are only heuristics and deserve a micro-foundation.

In the specific case of large-tick assets, different notions have also emerged in the academic literature. Delattre et al. introduced in [14] an interesting approach in which they assume that there exists an unobservable “efficient” price and deduce the location of that price through the order flow at the bid. More precisely, they consider limit orders sent with a probability that is a monotone function of the distance between that unobserved efficient price and the (observed) bid. Using historical data, they estimate that function in a nonparametric way and then deduce from the current (in fact recent) order flow an estimation of the efficient price. Two-sided extensions of this approach, where one uses both the bid and the ask sides, could be imagined and would share much with the modeling approach of the trading flow typically used in OTC market making models. Robert and Rosenbaum proposed in [30] another route to estimate an efficient price for large-tick assets that does not rely on the volumes at the best limits in the LOB but rather on transaction prices only. The main idea underlying their approach is that if a transaction occurs and changes one of the best limits in the LOB, then the efficient price must be close enough to the transaction price. Their paper is one of the applications of the concept of uncertainty zones, which has also been used for the optimal choice of tick sizes (see [13] and [2] for a recent paper).

In an attempt to provide a general framework for defining notions of real-time price, Stoikov proposed in[32] the concept of micro-price.444See [33] for a recent multi-asset extension. This micro-price is defined as the long-term expectation of the (classical) mid-price conditional on all the information currently available. In other words, it relies on a long-term limit to eliminate microstructural noise.555A vast literature exists regarding the filtering of microstructural noise. However, the aim of that literature is more that of estimating volatility at the high-frequency level rather than effectively constructing a denoised price. Similar ideas were present in the paper [26] by Lehalle and Mounjid, who, however, restricted the conditioning to the value of the current mid-price and imbalance.666In fact, the idea could be traced back to [25]. The general framework proposed by Stoikov leads to various notions of price depending on the assumptions made regarding the random variables at stake. In particular, the notions of mid-price and weighted mid-price are outcomes of the approach for simple models of the LOB dynamics. An important advantage of this approach, beyond its versatility, is that the micro-price is always, by definition, a martingale.

Many concepts have been introduced in the case of markets organized around LOBs, and these concepts are commonly used by practitioners in the equity world. The case of RFQ markets, however, has always attracted less research. In fact, several questions arise naturally when it comes to RFQ markets, especially regarding the available information.

On some markets, post-trade transparency is enforced, and both dealers and clients777In this paper, we use the word client to designate a liquidity-taker, i.e., any market participant who is not a dealer (as in the expression “dealer-to-client segment”). It is, of course, not the client of a specific dealer, although we are going to use a dataset of RFQs sent to a specific dealer. can have access – at least theoretically – to a consolidated tape of transactions. This is the case in the US corporate bond markets with TRACE data (see [15, 16] for relevant statistical methods to exploit TRACE data), but the situation is different in the European market despite recent efforts. The problem is, in fact, the fragmented nature of information and, as in all OTC markets, the lag in reporting.

Beyond transaction prices and volumes, clients usually have access to the prices streamed by dealers on electronic platforms.888In the case of the European market for corporate bonds, the main multi-dealer-to-client platforms are those of Bloomberg, MarketAxess, and Tradeweb. However, streamed prices are only indicative and for a given size. As far as dealers are concerned, the information available to them depends on the market. In the case of corporate bonds, dealers do not have access to the prices streamed by competitors, but they have access to composite prices provided by multi-dealer-to-client electronic platforms (CBBT for Bloomberg, CP+ for MarketAxess, etc.) or can create their own composites from multiple sources. These prices have many drawbacks, but they often constitute a useful first estimate. Beyond indicative prices, dealers have access to a lot of information through their customer flows. In the case of corporate bond markets, requests for quotes (RFQs) constitute, for a market maker with a decent market share, the main source of information beyond composite prices. The information content of client flows is indeed very important: (i)the side/sign of RFQs (i.e., the willingness to buy or to sell) indicates the sentiment of clients on each asset or, more generally, on assets with similar characteristics (sector of the issuer and maturity in the case of corporate bonds), and (ii) client decisions to trade at the price quoted by the dealer, at a better or identical price proposed by another dealer, or not to trade, inform about competition, but also about the demand curve of clients and, therefore, about the current (unobservable) price or its distribution.999One limitation is that some requests are sent without the intention to trade (for instance, to value a portfolio). However, on multi-dealer-to-client platforms, dealers know whether the requests they answered led to a transaction with a competitor.

The use of RFQ data to estimate a real-time price in corporate bond markets is not new in the literature. A multivariate approach based on particle filtering has been proposed in [21], which exploited information from a proprietary database of RFQs sent to a dealer and trades in the dealer-to-dealer segment of the market. This particle filtering approach is interesting in that it is Bayesian and therefore provides a distribution for real-time prices.

In this paper, we propose two new ideas that both rely on a novel approach to model the flow of RFQs and its complex dynamics. In many OTC market making models, requests are modeled by Poisson processes: they arrive randomly, and the probability of occurrence of an RFQ is constant over time – we call this probability the intensity, which is the infinitesimal probability of an RFQ occurrence per unit of time. To model varying liquidity, we assume in this paper that RFQs arrive randomly with an intensity that is itself a stochastic process: a simple continuous-time Markov chain with only a few states. In technical terms, we model the flow of RFQs at the bid and ask sides by a bidimensional Markov-modulated Poisson process (MMPP).101010See [17] for an overview of MMPPs and their historical applications in telecommunications.

Our first idea consists in defining a micro-price à la Stoikov using the information contained in the flow imbalance. More precisely, we assume that the price process drifts proportionally to the difference between the intensity at the ask and the intensity at the bid. When the intensities at the bid and the ask are the same, the micro-price is nothing but the current price. However, imbalance leads to a micro-price above or below the current price depending on the side of the imbalance. The exact value of the micro-price depends, of course, on the proportionality factor and on the joint dynamics of intensities.

Our second idea is inspired by the recent literature on OTC market making (see the reference books [10, 22] for an overview of the recent market making literature). When two agents want to agree on a price, they can resort to a neutral third party. However, if the seller requests a price from a market maker, they will get the bid price quoted by that market maker. If, instead, the buyer requests a price from a market maker, they will get the ask price quoted by that market maker. If we assume that this third party is aware of the flow imbalances in the market, it is then natural to regard the average between these two prices as a fair price, especially when the market maker has zero inventory.

In market making models à la Avellaneda-Stoikov [1] (see also [6, 7, 22, 23] for presentations more consistent with OTC markets), trading flows depend on the distance of the dealer’s quotes to an exogenous reference price. If trading flows (or intensities in mathematical models) at the bid and ask are the same, then the optimal bid and ask prices of a market maker with no inventory should be symmetric around the reference price, which is therefore a fair transfer price. However, when a market maker is aware of asymmetries in the trading flows, they skew their quotes even in the absence of inventory. As a consequence, the average between the optimal bid and ask quotes ceases to coincide with the reference price. Nonetheless, it remains a fair transfer price given the current context in terms of liquidity. We therefore propose an extension of existing market making models to incorporate MMPPs and obtain a new model in which the average between the bid and ask quotes (in the absence of inventory) defines a fair transfer price that can be used to value or transfer securities even when the market is illiquid and/or tends to be one-sided.

In Section2, we introduce the modeling framework for the flow of RFQs and present a statistical technique for the estimation of the model parameters. In Section3, we present a notion of micro-price inspired by that of Stoikov, but rooted in our model for the flow of RFQs, and introduce our notion of Fair Transfer Price. Section4 discusses numerical methods, presents numerous numerical examples, and analyzes them. AppendixA present two important extensions of our model for the flow of RFQs that are used in the paper. The first extension is linked to an exchangeability assumption between the intensities at the bid and the ask. This assumption means that there is no structural asymmetry between the bid and the ask: liquidity can, of course, be asymmetric from time to time, with a higher intensity on one side, but this is only transitory and the same could happen on the other side with the same probability. The second extension allows us to go multi-asset.

2 A modelling framework for the flow of RFQs

2.1 Introduction and notation

In OTC markets based on RFQs, the number of requests received by a dealer can vary significantly. It can also be high on one side and low on the other, highlighting the crucial role of dealers who hold inventory and bridge the gap between different phases.

To model the dynamics of liquidity, the basic idea is to regard the number of RFQs received by a dealer on a given asset at the bid and at the ask as two point processes. Of course, Poisson processes are not sufficient: the intensities (λtb)tsubscriptsubscriptsuperscript𝜆𝑏𝑡𝑡(\lambda^{b}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (for the bid) and (λta)tsubscriptsubscriptsuperscript𝜆𝑎𝑡𝑡(\lambda^{a}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (for the ask) must be stochastic processes. In quantitative finance, the most commonly used extensions of Poisson processes are Hawkes processes. Hawkes processes are indeed very good at modeling events that may happen in clusters. However, they are self-excited processes and, in a market with limited post-trade transparency, we argue that it is odd to assume that an RFQ sent by a client is the consequence of an RFQ sent by another client. Instead of using Hawkes processes, we assume that intensities are continuous-time Markov chains with values in a finite set and use the concept of Markov-modulated Poisson process. Because liquidity shocks can sometimes be symmetric and sometimes asymmetric, we consider more precisely a bidimensional MMPP: the intensity111111Throughout the paper, we call this process an intensity process in spite of it being bidimensional. process (λt)t=(λtb,λta)tsubscriptsubscript𝜆𝑡𝑡subscriptsubscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡𝑡(\lambda_{t})_{t}=(\lambda^{b}_{t},\lambda^{a}_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is a continuous-time Markov chain taking values in {λ1,b,,λmb,b}×{λ1,a,,λma,a}superscript𝜆1𝑏superscript𝜆subscript𝑚𝑏𝑏superscript𝜆1𝑎superscript𝜆subscript𝑚𝑎𝑎\{\lambda^{1,b},\ldots,\lambda^{m_{b},b}\}\times\{\lambda^{1,a},\ldots,\lambda%^{m_{a},a}\}{ italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT } × { italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT } with transition (or rate) matrix QMmbma𝑄subscript𝑀subscript𝑚𝑏subscript𝑚𝑎Q\in M_{m_{b}m_{a}}italic_Q ∈ italic_M start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT.121212In what follows, we order the states in lexicographic order: (λ1,b,λ1,a),,(λ1,b,λma,a),,(λmb,b,λ1,a),,(λmb,b,λma,a).superscript𝜆1𝑏superscript𝜆1𝑎superscript𝜆1𝑏superscript𝜆subscript𝑚𝑎𝑎superscript𝜆subscript𝑚𝑏𝑏superscript𝜆1𝑎superscript𝜆subscript𝑚𝑏𝑏superscript𝜆subscript𝑚𝑎𝑎(\lambda^{1,b},\lambda^{1,a}),\ldots,(\lambda^{1,b},\lambda^{m_{a},a}),\ldots,%(\lambda^{m_{b},b},\lambda^{1,a}),\ldots,(\lambda^{m_{b},b},\lambda^{m_{a},a}).( italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT ) , … , ( italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) , … , ( italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT ) , … , ( italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) . The case in which the two intensity processes are considered in an independent manner is a specific one and corresponds, for the chosen order, to Q=QbIma+ImbQa𝑄tensor-productsuperscript𝑄𝑏subscript𝐼subscript𝑚𝑎tensor-productsubscript𝐼subscript𝑚𝑏superscript𝑄𝑎Q=Q^{b}\otimes I_{m_{a}}+I_{m_{b}}\otimes Q^{a}italic_Q = italic_Q start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ italic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT where Qbsuperscript𝑄𝑏Q^{b}italic_Q start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Qasuperscript𝑄𝑎Q^{a}italic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are the transition matrices associated with (λtb)tsubscriptsubscriptsuperscript𝜆𝑏𝑡𝑡(\lambda^{b}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and (λta)tsubscriptsubscriptsuperscript𝜆𝑎𝑡𝑡(\lambda^{a}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT respectively and tensor-product\otimes denotes the tensor (or Kronecker) product.

In what follows, we focus on the estimation of the intensities λ1,b,,λmb,bsuperscript𝜆1𝑏superscript𝜆subscript𝑚𝑏𝑏\lambda^{1,b},\ldots,\lambda^{m_{b},b}italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT and λ1,a,,λma,asuperscript𝜆1𝑎superscript𝜆subscript𝑚𝑎𝑎\lambda^{1,a},\ldots,\lambda^{m_{a},a}italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT and the coefficients of the transition matrix Q𝑄Qitalic_Q. The method we propose is inspired by the EM algorithm proposed in[31] but generalized to the more complex case of a bidimensional MMPP. We also present two important extensions in Appendix A.

2.2 Estimation of the parameters

2.2.1 Likelihood of a sample

Our goal in the next paragraphs is to compute the likelihood of a sequence of RFQ times t1<<tNsubscript𝑡1subscript𝑡𝑁t_{1}<\ldots<t_{N}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT with sides 𝔰1,,𝔰Nsubscript𝔰1subscript𝔰𝑁\mathfrak{s}_{1},\ldots,\mathfrak{s}_{N}fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, where the sides are encoded as elements of {b,a}𝑏𝑎\{b,a\}{ italic_b , italic_a } for bid and ask.

Let us denote by (NtRFQ,b)tsubscriptsubscriptsuperscript𝑁RFQ𝑏𝑡𝑡(N^{\text{RFQ},b}_{t})_{t}( italic_N start_POSTSUPERSCRIPT RFQ , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and (NtRFQ,a)tsubscriptsubscriptsuperscript𝑁RFQ𝑎𝑡𝑡(N^{\text{RFQ},a}_{t})_{t}( italic_N start_POSTSUPERSCRIPT RFQ , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT the processes counting the number of RFQs at the bid and at the ask respectively, and let us consider the function

𝒢:t(𝒢(jb1)ma+ja,(kb1)ma+ka(t))1jb,kbmb,1ja,kama:𝒢maps-to𝑡subscriptsuperscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡formulae-sequence1subscript𝑗𝑏formulae-sequencesubscript𝑘𝑏subscript𝑚𝑏formulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎\mathcal{G}:t\mapsto(\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t%))_{1\leq j_{b},k_{b}\leq m_{b},1\leq j_{a},k_{a}\leq m_{a}}caligraphic_G : italic_t ↦ ( caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT

where

𝒢(jb1)ma+ja,(kb1)ma+ka(t)=(NtRFQ,b=0,NtRFQ,a=0,λt=(λkb,b,λka,a)|λ0=(λjb,b,λja,a)).superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑏𝑡0formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑎𝑡0subscript𝜆𝑡conditionalsuperscript𝜆subscript𝑘𝑏𝑏superscript𝜆subscript𝑘𝑎𝑎subscript𝜆0superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)=\mathbb{P}(N^{RFQ,b%}_{t}=0,N^{RFQ,a}_{t}=0,\lambda_{t}=(\lambda^{k_{b},b},\lambda^{k_{a},a})|%\lambda_{0}=(\lambda^{j_{b},b},\lambda^{j_{a},a})).caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) = blackboard_P ( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) ) .

We have for h>00h>0italic_h > 0, 1jb,kbmbformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏subscript𝑚𝑏1\leq j_{b},k_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1ja,kamaformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎1\leq j_{a},k_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT:

𝒢(jb1)ma+ja,(kb1)ma+ka(t+h)superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡\displaystyle\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t+h)caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t + italic_h )
=\displaystyle==(Nt+hRFQ,b=0,Nt+hRFQ,a=0,λt+h=(λkb,b,λka,a)|λ0=(λjb,b,λja,a))formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑏𝑡0formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑎𝑡0subscript𝜆𝑡conditionalsuperscript𝜆subscript𝑘𝑏𝑏superscript𝜆subscript𝑘𝑎𝑎subscript𝜆0superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎\displaystyle\mathbb{P}(N^{RFQ,b}_{t+h}=0,N^{RFQ,a}_{t+h}=0,\lambda_{t+h}=(%\lambda^{k_{b},b},\lambda^{k_{a},a})|\lambda_{0}=(\lambda^{j_{b},b},\lambda^{j%_{a},a}))blackboard_P ( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==lb=1mbla=1ma(Nt+hRFQ,b=0,Nt+hRFQ,a=0,λt+h=(λkb,b,λka,a),λt=(λlb,b,λla,a)|λ0=(λjb,b,λja,a))superscriptsubscriptsubscript𝑙𝑏1subscript𝑚𝑏superscriptsubscriptsubscript𝑙𝑎1subscript𝑚𝑎formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑏𝑡0formulae-sequencesubscriptsuperscript𝑁𝑅𝐹𝑄𝑎𝑡0formulae-sequencesubscript𝜆𝑡superscript𝜆subscript𝑘𝑏𝑏superscript𝜆subscript𝑘𝑎𝑎subscript𝜆𝑡conditionalsuperscript𝜆subscript𝑙𝑏𝑏superscript𝜆subscript𝑙𝑎𝑎subscript𝜆0superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎\displaystyle\sum_{l_{b}=1}^{m_{b}}\sum_{l_{a}=1}^{m_{a}}\mathbb{P}(N^{RFQ,b}_%{t+h}=0,N^{RFQ,a}_{t+h}=0,\lambda_{t+h}=(\lambda^{k_{b},b},\lambda^{k_{a},a}),%\lambda_{t}=(\lambda^{l_{b},b},\lambda^{l_{a},a})|\lambda_{0}=(\lambda^{j_{b},%b},\lambda^{j_{a},a}))∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_P ( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==lb=1mbla=1ma𝒢(jb1)ma+ja,(lb1)ma+la(t)(Nt+hRFQ,b=0,Nt+hRFQ,a=0,λt+h=(λkb,b,λka,a)\displaystyle\sum_{l_{b}=1}^{m_{b}}\sum_{l_{a}=1}^{m_{a}}\mathcal{G}^{(j_{b}-1%)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)\mathbb{P}\left(N^{RFQ,b}_{t+h}=0,N^{RFQ,%a}_{t+h}=0,\lambda_{t+h}=(\lambda^{k_{b},b},\lambda^{k_{a},a})\right.∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) blackboard_P ( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
|NtRFQ,b=0,NtRFQ,a=0,λt=(λlb,b,λla,a))\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left|\left.N^{%RFQ,b}_{t}=0,N^{RFQ,a}_{t}=0,\lambda_{t}=(\lambda^{l_{b},b},\lambda^{l_{a},a})%\right)\right.| italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==𝒢(jb1)ma+ja,(kb1)ma+ka(t)(1+Q(kb1)ma+ka,(kb1)ma+kah+o(h))superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡1subscript𝑄subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑜\displaystyle\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)\left(1%+Q_{(k_{b}-1)m_{a}+k_{a},(k_{b}-1)m_{a}+k_{a}}h+o(h)\right)caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( 1 + italic_Q start_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_h + italic_o ( italic_h ) )
×(1λkb,bh+o(h))(1λka,ah+o(h))absent1superscript𝜆subscript𝑘𝑏𝑏𝑜1superscript𝜆subscript𝑘𝑎𝑎𝑜\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\times\left(1-\lambda^{k_{b},%b}h+o(h)\right)\left(1-\lambda^{k_{a},a}h+o(h)\right)× ( 1 - italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_h + italic_o ( italic_h ) ) ( 1 - italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_h + italic_o ( italic_h ) )
+1lbmb,1lama,(lb,la)(kb,ka)𝒢(jb1)ma+ja,(lb1)ma+la(t)(Q(lb1)ma+la,(kb1)ma+kah+o(h)).subscriptformulae-sequence1subscript𝑙𝑏subscript𝑚𝑏1subscript𝑙𝑎subscript𝑚𝑎subscript𝑙𝑏subscript𝑙𝑎subscript𝑘𝑏subscript𝑘𝑎superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎𝑡subscript𝑄subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑜\displaystyle+\sum_{1\leq l_{b}\leq m_{b},1\leq l_{a}\leq m_{a},(l_{b},l_{a})%\neq(k_{b},k_{a})}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)%\left(Q_{(l_{b}-1)m_{a}+l_{a},(k_{b}-1)m_{a}+k_{a}}h+o(h)\right).+ ∑ start_POSTSUBSCRIPT 1 ≤ italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( italic_Q start_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_h + italic_o ( italic_h ) ) .

This leads to the following differential equation:

ddt𝒢(jb1)ma+ja,(kb1)ma+ka(t)=𝒢(jb1)ma+ja,(kb1)ma+ka(t)(Q(kb1)ma+ka,(kb1)ma+kaλkb,bλka,a)𝑑𝑑𝑡superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡subscript𝑄subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscript𝜆subscript𝑘𝑏𝑏superscript𝜆subscript𝑘𝑎𝑎\frac{d\ }{dt}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)=%\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)\left(Q_{(k_{b}-1)m_%{a}+k_{a},(k_{b}-1)m_{a}+k_{a}}-\lambda^{k_{b},b}-\lambda^{k_{a},a}\right)divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) = caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( italic_Q start_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
+1lbmb,1lama,(lb,la)(kb,ka)𝒢(jb1)ma+ja,(lb1)ma+la(t)Q(lb1)ma+la,(kb1)ma+kasubscriptformulae-sequence1subscript𝑙𝑏subscript𝑚𝑏1subscript𝑙𝑎subscript𝑚𝑎subscript𝑙𝑏subscript𝑙𝑎subscript𝑘𝑏subscript𝑘𝑎superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎𝑡subscript𝑄subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎+\sum_{1\leq l_{b}\leq m_{b},1\leq l_{a}\leq m_{a},(l_{b},l_{a})\neq(k_{b},k_{%a})}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)Q_{(l_{b}-1)m_{a%}+l_{a},(k_{b}-1)m_{a}+k_{a}}+ ∑ start_POSTSUBSCRIPT 1 ≤ italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) italic_Q start_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT

which, in matrix form, writes

𝒢(t)=𝒢(t)(QΛ~bΛ~a)superscript𝒢𝑡𝒢𝑡𝑄superscript~Λ𝑏superscript~Λ𝑎\mathcal{G}^{\prime}(t)=\mathcal{G}(t)\left(Q-\tilde{\Lambda}^{b}-\tilde{%\Lambda}^{a}\right)caligraphic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = caligraphic_G ( italic_t ) ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT )

where Λb=diag(λ1,b,,λmb,b)superscriptΛ𝑏diagsuperscript𝜆1𝑏superscript𝜆subscript𝑚𝑏𝑏\Lambda^{b}=\text{diag}(\lambda^{1,b},\ldots,\lambda^{m_{b},b})roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = diag ( italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ), Λa=diag(λ1,a,,λma,a)superscriptΛ𝑎diagsuperscript𝜆1𝑎superscript𝜆subscript𝑚𝑎𝑎\Lambda^{a}=\text{diag}(\lambda^{1,a},\ldots,\lambda^{m_{a},a})roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = diag ( italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ), Λ~b=ΛbImasuperscript~Λ𝑏tensor-productsuperscriptΛ𝑏subscript𝐼subscript𝑚𝑎\tilde{\Lambda}^{b}=\Lambda^{b}\otimes I_{m_{a}}over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Λ~a=ImbΛasuperscript~Λ𝑎tensor-productsubscript𝐼subscript𝑚𝑏superscriptΛ𝑎\tilde{\Lambda}^{a}=I_{m_{b}}\otimes\Lambda^{a}over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT.

As 𝒢(0)𝒢0\mathcal{G}(0)caligraphic_G ( 0 ) is the identity matrix Imbmasubscript𝐼subscript𝑚𝑏subscript𝑚𝑎I_{m_{b}m_{a}}italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT, we conclude that

𝒢(t)=exp((QΛ~bΛ~a)t).𝒢𝑡𝑄superscript~Λ𝑏superscript~Λ𝑎𝑡\mathcal{G}(t)=\exp\left(\left(Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a}\right%)t\right).caligraphic_G ( italic_t ) = roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) italic_t ) .

By Markov property, for s0𝑠0s\geq 0italic_s ≥ 0, if we assume that λssubscript𝜆𝑠\lambda_{s}italic_λ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is distributed according to a distribution represented by a column vector πssubscript𝜋𝑠\pi_{s}italic_π start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (in mbmasuperscriptsubscript𝑚𝑏subscript𝑚𝑎\mathbb{R}^{m_{b}m_{a}}blackboard_R start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT), then for 1jbmb,1jamaformulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎1\leq j_{b}\leq m_{b},1\leq j_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, πsexp((QΛ~bΛ~a)t)e(jb1)mb+jasuperscriptsubscript𝜋𝑠𝑄superscript~Λ𝑏superscript~Λ𝑎𝑡superscript𝑒subscript𝑗𝑏1subscript𝑚𝑏subscript𝑗𝑎\pi_{s}^{\prime}\exp((Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a})t)e^{(j_{b}-1)%m_{b}+j_{a}}italic_π start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) italic_t ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the probability that there was no RFQ between time s𝑠sitalic_s and time s+t𝑠𝑡s+titalic_s + italic_t and the intensity process is equal to (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) at time s+t𝑠𝑡s+titalic_s + italic_t.131313(e1,,embma)superscript𝑒1superscript𝑒subscript𝑚𝑏subscript𝑚𝑎(e^{1},\ldots,e^{m_{b}m_{a}})( italic_e start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , italic_e start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) is the canonical basis of mbmasuperscriptsubscript𝑚𝑏subscript𝑚𝑎\mathbb{R}^{m_{b}m_{a}}blackboard_R start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

If we assume that λ0subscript𝜆0\lambda_{0}italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is distributed according to a distribution represented by a column vector π0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, then the likelihood of the whole sample writes

(Q,Λb,Λa|t1,,tN,𝔰1,𝔰N)𝑄superscriptΛ𝑏conditionalsuperscriptΛ𝑎subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁\displaystyle\mathcal{L}(Q,\Lambda^{b},\Lambda^{a}|t_{1},\ldots,t_{N},%\mathfrak{s}_{1},\ldots\mathfrak{s}_{N})caligraphic_L ( italic_Q , roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT | italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT )
=\displaystyle==π0(n=1Nexp((QΛ~bΛ~a)(tntn1))Λ~𝔰n)esuperscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑛subscript𝑡𝑛1superscript~Λsubscript𝔰𝑛𝑒\displaystyle\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp\left(\left(Q-\tilde{%\Lambda}^{b}-\tilde{\Lambda}^{a}\right)(t_{n}-t_{n-1})\right)\tilde{\Lambda}^{%\mathfrak{s}_{n}}\right)eitalic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_e

where t0=0subscript𝑡00t_{0}=0italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 and e=jb=1mbja=1mae(jb1)ma+ja=(1,,1)𝑒superscriptsubscriptsubscript𝑗𝑏1subscript𝑚𝑏superscriptsubscriptsubscript𝑗𝑎1subscript𝑚𝑎superscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscript11e=\sum_{j_{b}=1}^{m_{b}}\sum_{j_{a}=1}^{m_{a}}e^{(j_{b}-1)m_{a}+j_{a}}=(1,%\ldots,1)^{\prime}italic_e = ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = ( 1 , … , 1 ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT.

Maximizing the above likelihood expression is not straightforward. Instead, we propose in the next paragraph an EM algorithm in which the hidden variables correspond to the trajectory of the unobservable intensity process.

2.2.2 An EM algorithm

Let us consider as hidden variables a sequence of times 0=τ0<<τP(tN)0subscript𝜏0annotatedsubscript𝜏𝑃absentsubscript𝑡𝑁0=\tau_{0}<\ldots<\tau_{P}(\leq t_{N})0 = italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < … < italic_τ start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ( ≤ italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) corresponding to transitions of the process (λt)tsubscriptsubscript𝜆𝑡𝑡(\lambda_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and a sequence of couples (s0b,s0a),,(sPb,sPa)subscriptsuperscript𝑠𝑏0subscriptsuperscript𝑠𝑎0subscriptsuperscript𝑠𝑏𝑃subscriptsuperscript𝑠𝑎𝑃(s^{b}_{0},s^{a}_{0}),\ldots,(s^{b}_{P},s^{a}_{P})( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , … , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) in {1,,mb}×{1,,ma}1subscript𝑚𝑏1subscript𝑚𝑎\{1,\ldots,m_{b}\}\times\{1,\ldots,m_{a}\}{ 1 , … , italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT } × { 1 , … , italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT } such that (λtb,λta)=(λspb,b,λspa,a)subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡superscript𝜆subscriptsuperscript𝑠𝑏𝑝𝑏superscript𝜆subscriptsuperscript𝑠𝑎𝑝𝑎(\lambda^{b}_{t},\lambda^{a}_{t})=(\lambda^{s^{b}_{p},b},\lambda^{s^{a}_{p},a})( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) = ( italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) over [τp,τp+1)subscript𝜏𝑝subscript𝜏𝑝1[\tau_{p},\tau_{p+1})[ italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT ) (where, by convention τP+1=tNsubscript𝜏𝑃1subscript𝑡𝑁\tau_{P+1}=t_{N}italic_τ start_POSTSUBSCRIPT italic_P + 1 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT).

The likelihood of t1<<tNsubscript𝑡1subscript𝑡𝑁t_{1}<\ldots<t_{N}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, 𝔰1,𝔰Nsubscript𝔰1subscript𝔰𝑁\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, τ1<<τPsubscript𝜏1subscript𝜏𝑃\tau_{1}<\ldots<\tau_{P}italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_τ start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT, s0b,,sPbsubscriptsuperscript𝑠𝑏0subscriptsuperscript𝑠𝑏𝑃s^{b}_{0},\ldots,s^{b}_{P}italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT and s0a,,sPasubscriptsuperscript𝑠𝑎0subscriptsuperscript𝑠𝑎𝑃s^{a}_{0},\ldots,s^{a}_{P}italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is

(Q,Λb,Λa|t1,,tN,𝔰1,𝔰N,τ1,,τP+1,s0b,,sPb,s0a,,sPa)𝑄superscriptΛ𝑏conditionalsuperscriptΛ𝑎subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁subscript𝜏1subscript𝜏𝑃1subscriptsuperscript𝑠𝑏0subscriptsuperscript𝑠𝑏𝑃subscriptsuperscript𝑠𝑎0subscriptsuperscript𝑠𝑎𝑃\displaystyle\mathcal{L}(Q,\Lambda^{b},\Lambda^{a}|t_{1},\ldots,t_{N},%\mathfrak{s}_{1},\ldots\mathfrak{s}_{N},\tau_{1},\ldots,\tau_{P+1},s^{b}_{0},%\ldots,s^{b}_{P},s^{a}_{0},\ldots,s^{a}_{P})caligraphic_L ( italic_Q , roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT | italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_τ start_POSTSUBSCRIPT italic_P + 1 end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT )
=\displaystyle==(π0)(s0b1)ma+s0a(p=0P1Q(spb1)ma+spa,(sp+1b1)ma+sp+1aexp(Q(spb1)ma+spa,(spb1)ma+spa(τp+1τp)))subscriptsubscript𝜋0subscriptsuperscript𝑠𝑏01subscript𝑚𝑎subscriptsuperscript𝑠𝑎0superscriptsubscriptproduct𝑝0𝑃1subscript𝑄subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscriptsuperscript𝑠𝑏𝑝11subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝1subscript𝑄subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscript𝜏𝑝1subscript𝜏𝑝\displaystyle(\pi_{0})_{(s^{b}_{0}-1)m_{a}+s^{a}_{0}}\left(\prod_{p=0}^{P-1}Q_%{(s^{b}_{p}-1)m_{a}+s^{a}_{p},(s^{b}_{p+1}-1)m_{a}+s^{a}_{p+1}}\exp\left({Q_{(%s^{b}_{p}-1)m_{a}+s^{a}_{p},(s^{b}_{p}-1)m_{a}+s^{a}_{p}}(\tau_{p+1}-\tau_{p})%}\right)\right)( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ∏ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P - 1 end_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_exp ( italic_Q start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ) )
×exp(Q(spb1)ma+spa,(spb1)ma+spa(τP+1τP))(p=0P(λspb,b)cpbexp(λspb,b(τp+1τp)))absentsubscript𝑄subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscript𝜏𝑃1subscript𝜏𝑃superscriptsubscriptproduct𝑝0𝑃superscriptsuperscript𝜆subscriptsuperscript𝑠𝑏𝑝𝑏subscriptsuperscript𝑐𝑏𝑝superscript𝜆subscriptsuperscript𝑠𝑏𝑝𝑏subscript𝜏𝑝1subscript𝜏𝑝\displaystyle\times\exp\left({Q_{(s^{b}_{p}-1)m_{a}+s^{a}_{p},(s^{b}_{p}-1)m_{%a}+s^{a}_{p}}(\tau_{P+1}-\tau_{P})}\right)\left(\prod_{p=0}^{P}\left(\lambda^{%s^{b}_{p},b}\right)^{c^{b}_{p}}\exp\left({-\lambda^{s^{b}_{p},b}(\tau_{p+1}-%\tau_{p})}\right)\right)× roman_exp ( italic_Q start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_P + 1 end_POSTSUBSCRIPT - italic_τ start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) ) ( ∏ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT ( italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp ( - italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ) )
×(p=0P(λspa,a)cpaexp(λspa,a(τp+1τp)))absentsuperscriptsubscriptproduct𝑝0𝑃superscriptsuperscript𝜆subscriptsuperscript𝑠𝑎𝑝𝑎subscriptsuperscript𝑐𝑎𝑝superscript𝜆subscriptsuperscript𝑠𝑎𝑝𝑎subscript𝜏𝑝1subscript𝜏𝑝\displaystyle\times\left(\prod_{p=0}^{P}\left(\lambda^{s^{a}_{p},a}\right)^{c^%{a}_{p}}\exp\left({-\lambda^{s^{a}_{p},a}(\tau_{p+1}-\tau_{p})}\right)\right)× ( ∏ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT ( italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp ( - italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ) )

where cpb=Card({n|tn[τp,τp+1),𝔰n=b})subscriptsuperscript𝑐𝑏𝑝Cardconditional-set𝑛formulae-sequencesubscript𝑡𝑛subscript𝜏𝑝subscript𝜏𝑝1subscript𝔰𝑛𝑏c^{b}_{p}=\text{Card}(\{n|t_{n}\in[\tau_{p},\tau_{p+1}),\mathfrak{s}_{n}=b\})italic_c start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = Card ( { italic_n | italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ [ italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT ) , fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_b } ) and cpa=Card({n|tn[τp,τp+1),𝔰n=a})subscriptsuperscript𝑐𝑎𝑝Cardconditional-set𝑛formulae-sequencesubscript𝑡𝑛subscript𝜏𝑝subscript𝜏𝑝1subscript𝔰𝑛𝑎c^{a}_{p}=\text{Card}(\{n|t_{n}\in[\tau_{p},\tau_{p+1}),\mathfrak{s}_{n}=a\})italic_c start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = Card ( { italic_n | italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ [ italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT ) , fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a } ).

The associated log-likelihood writes

log((π0)(s0b1)ma+s0a)+p=0P1log(Q(spb1)ma+spa,(sp+1b1)ma+sp+1a)subscriptsubscript𝜋0subscriptsuperscript𝑠𝑏01subscript𝑚𝑎subscriptsuperscript𝑠𝑎0superscriptsubscript𝑝0𝑃1subscript𝑄subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscriptsuperscript𝑠𝑏𝑝11subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝1\displaystyle\log\left((\pi_{0})_{(s^{b}_{0}-1)m_{a}+s^{a}_{0}}\right)+\sum_{p%=0}^{P-1}\log\left(Q_{(s^{b}_{p}-1)m_{a}+s^{a}_{p},(s^{b}_{p+1}-1)m_{a}+s^{a}_%{p+1}}\right)roman_log ( ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P - 1 end_POSTSUPERSCRIPT roman_log ( italic_Q start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )(1)
+p=0P(Q(spb1)ma+spa,(spb1)ma+spaλspb,bλspa,a)(τp+1τp)+p=0Pcpblog(λspb,b)+p=0Pcpalog(λspa,b)superscriptsubscript𝑝0𝑃subscript𝑄subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝subscriptsuperscript𝑠𝑏𝑝1subscript𝑚𝑎subscriptsuperscript𝑠𝑎𝑝superscript𝜆subscriptsuperscript𝑠𝑏𝑝𝑏superscript𝜆subscriptsuperscript𝑠𝑎𝑝𝑎subscript𝜏𝑝1subscript𝜏𝑝superscriptsubscript𝑝0𝑃subscriptsuperscript𝑐𝑏𝑝superscript𝜆subscriptsuperscript𝑠𝑏𝑝𝑏superscriptsubscript𝑝0𝑃subscriptsuperscript𝑐𝑎𝑝superscript𝜆subscriptsuperscript𝑠𝑎𝑝𝑏\displaystyle+\sum_{p=0}^{P}\left(Q_{(s^{b}_{p}-1)m_{a}+s^{a}_{p},(s^{b}_{p}-1%)m_{a}+s^{a}_{p}}-\lambda^{s^{b}_{p},b}-\lambda^{s^{a}_{p},a}\right)(\tau_{p+1%}-\tau_{p})+\sum_{p=0}^{P}c^{b}_{p}\log(\lambda^{s^{b}_{p},b})+\sum_{p=0}^{P}c%^{a}_{p}\log(\lambda^{s^{a}_{p},b})+ ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) ( italic_τ start_POSTSUBSCRIPT italic_p + 1 end_POSTSUBSCRIPT - italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT )
=\displaystyle==log((π0)(s0b1)ma+s0a)+1jbmb1jama1kbmb1kama(jb,ja)(kb,ka)n~(jb,ja),(kb,ka)log(Q(jb1)ma+ja,(kb1)ma+ka)subscriptsubscript𝜋0subscriptsuperscript𝑠𝑏01subscript𝑚𝑎subscriptsuperscript𝑠𝑎0subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscript1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎\displaystyle\log\left((\pi_{0})_{(s^{b}_{0}-1)m_{a}+s^{a}_{0}}\right)+\sum_{%\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\sum_{\begin{subarray}{c}1\leq k_{b}\leq m%_{b}\\1\leq k_{a}\leq m_{a}\\(j_{b},j_{a})\neq(k_{b},k_{a})\end{subarray}}\tilde{n}^{(j_{b},j_{a}),(k_{b},k%_{a})}\log(Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}})roman_log ( ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT roman_log ( italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
+1jbmb1jamaT~(jb,ja)(Q(jb1)ma+ja,(jb1)ma+jaλjb,bλja,a)subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎\displaystyle+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\tilde{T}^{(j_{b},j_{a})}\left(Q_{(j_{b}-1%)m_{a}+j_{a},(j_{b}-1)m_{a}+j_{a}}-\lambda^{j_{b},b}-\lambda^{j_{a},a}\right)+ ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
+1jbmb1jaman~(jb,ja)blog(λjb,b)+1jbmb1jaman~(jb,ja)alog(λja,a)subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscriptsuperscript~𝑛𝑏subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑏𝑏subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscriptsuperscript~𝑛𝑎subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑎𝑎\displaystyle+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\tilde{n}^{b}_{(j_{b},j_{a})}\log(\lambda^%{j_{b},b})+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\tilde{n}^{a}_{(j_{b},j_{a})}\log(\lambda^%{j_{a},a})+ ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
=\displaystyle==log((π0)(s0b1)ma+s0a)+1jbmb1jama1kbmb1kama(kb,ka)(jb,ja)n~(jb,ja),(kb,ka)log(Q(jb1)ma+ja,(kb1)ma+ka)subscriptsubscript𝜋0subscriptsuperscript𝑠𝑏01subscript𝑚𝑎subscriptsuperscript𝑠𝑎0subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscript1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝑗𝑏subscript𝑗𝑎superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎\displaystyle\log\left((\pi_{0})_{(s^{b}_{0}-1)m_{a}+s^{a}_{0}}\right)+\sum_{%\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\sum_{\begin{subarray}{c}1\leq k_{b}\leq m%_{b}\\1\leq k_{a}\leq m_{a}\\(k_{b},k_{a})\neq(j_{b},j_{a})\end{subarray}}\tilde{n}^{(j_{b},j_{a}),(k_{b},k%_{a})}\log(Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}})roman_log ( ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT roman_log ( italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
1jbmb1jama((1kbmb1kama(kb,ka)(jb,ja)Q(jb1)ma+ja,(kb1)ma+ka)+λjb,b+λja,a)T~(jb,ja)subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscript1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝑗𝑏subscript𝑗𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\displaystyle-\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\left(\left(\sum_{\begin{subarray}{c}1\leqk%_{b}\leq m_{b}\\1\leq k_{a}\leq m_{a}\\(k_{b},k_{a})\neq(j_{b},j_{a})\end{subarray}}Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)%m_{a}+k_{a}}\right)+\lambda^{j_{b},b}+\lambda^{j_{a},a}\right)\tilde{T}^{(j_{b%},j_{a})}- ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT ( ( ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT
+1jbmb1jaman~(jb,ja)blog(λjb,b)+1jbmb1jaman~(jb,ja)alog(λja,a)subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscriptsuperscript~𝑛𝑏subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑏𝑏subscript1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎subscriptsuperscript~𝑛𝑎subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑎𝑎\displaystyle+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\tilde{n}^{b}_{(j_{b},j_{a})}\log(\lambda^%{j_{b},b})+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m_{b}\\1\leq j_{a}\leq m_{a}\end{subarray}}\tilde{n}^{a}_{(j_{b},j_{a})}\log(\lambda^%{j_{a},a})+ ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )

where:

  • for 1jb,kbmbformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏subscript𝑚𝑏1\leq j_{b},k_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1ja,kamaformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎1\leq j_{a},k_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT with (jb,ja)(kb,ka)subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎(j_{b},j_{a})\neq(k_{b},k_{a})( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ), n~(jb,ja),(kb,ka)superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎\tilde{n}^{(j_{b},j_{a}),(k_{b},k_{a})}over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT is the number of transitions of the intensity process (λt)tsubscriptsubscript𝜆𝑡𝑡(\lambda_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT from (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) to (λkb,b,λka,a)superscript𝜆subscript𝑘𝑏𝑏superscript𝜆subscript𝑘𝑎𝑎(\lambda^{k_{b},b},\lambda^{k_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) over the time interval [0,tN]0subscript𝑡𝑁[0,t_{N}][ 0 , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ],

  • for 1jbmb1subscript𝑗𝑏subscript𝑚𝑏1\leq j_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1jama1subscript𝑗𝑎subscript𝑚𝑎1\leq j_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, T~(jb,ja)superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\tilde{T}^{(j_{b},j_{a})}over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT is the total time spent by the intensity process (λt)tsubscriptsubscript𝜆𝑡𝑡(\lambda_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT in (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) over the time interval[0,tN]0subscript𝑡𝑁[0,t_{N}][ 0 , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ],

  • for 1jbmb1subscript𝑗𝑏subscript𝑚𝑏1\leq j_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1jama1subscript𝑗𝑎subscript𝑚𝑎1\leq j_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, n~(jb,ja)bsuperscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑏\tilde{n}_{(j_{b},j_{a})}^{b}over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and n~(jb,ja)asuperscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑎\tilde{n}_{(j_{b},j_{a})}^{a}over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are the number of RFQs at the bid and at the ask respectively over the time interval [0,tN]0subscript𝑡𝑁[0,t_{N}][ 0 , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ] while the intensity process (λt)tsubscriptsubscript𝜆𝑡𝑡(\lambda_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is in (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ).

The EM algorithm consists in iteratively computing the expectation of the log-likelihood expression (1) conditionally on the real observables t1<<tNsubscript𝑡1subscript𝑡𝑁t_{1}<\ldots<t_{N}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT and 𝔰1,,𝔰Nsubscript𝔰1subscript𝔰𝑁\mathfrak{s}_{1},\ldots,\mathfrak{s}_{N}fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT under the assumption that the unobservable variables are distributed according to the model with given values Λb^^superscriptΛ𝑏\widehat{\Lambda^{b}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG, Λa^^superscriptΛ𝑎\widehat{\Lambda^{a}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG and Q^^𝑄\widehat{Q}over^ start_ARG italic_Q end_ARG of ΛbsuperscriptΛ𝑏\Lambda^{b}roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT, ΛasuperscriptΛ𝑎\Lambda^{a}roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and Q𝑄Qitalic_Q, and, then, carrying out a maximization of the resulting expression over the diagonal coefficients of ΛbsuperscriptΛ𝑏\Lambda^{b}roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and ΛasuperscriptΛ𝑎\Lambda^{a}roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and the non-diagonal coefficients of Q𝑄Qitalic_Q to update the values of Λb^^superscriptΛ𝑏\widehat{\Lambda^{b}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG, Λa^^superscriptΛ𝑎\widehat{\Lambda^{a}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG and Q^^𝑄\widehat{Q}over^ start_ARG italic_Q end_ARG.

Ignoring the first term which contributes almost nothing, we easily see that the EM algorithm boils down to the following updates:

Λb^jb,jbja=1ma𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja)b]ja=1ma𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)]for1jbmb,formulae-sequencesubscript^superscriptΛ𝑏subscript𝑗𝑏subscript𝑗𝑏superscriptsubscriptsubscript𝑗𝑎1subscript𝑚𝑎subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑏superscriptsubscriptsubscript𝑗𝑎1subscript𝑚𝑎subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎for1subscript𝑗𝑏subscript𝑚𝑏\widehat{\Lambda^{b}}_{j_{b},j_{b}}\leftarrow\frac{\sum_{j_{a}=1}^{m_{a}}%\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{Q},t_{1},%\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}_{(j_{b},j%_{a})}^{b}\right]}{\sum_{j_{a}=1}^{m_{a}}\mathbb{E}_{\widehat{\Lambda^{b}},%\widehat{\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots%\mathfrak{s}_{N}}\left[\tilde{T}^{(j_{b},j_{a})}\right]}\quad\text{ for }1\leqj%_{b}\leq m_{b},over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ← divide start_ARG ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ] end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG for 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ,
Λa^ja,jajb=1mb𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja)a]jb=1mb𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)]for1jama,formulae-sequencesubscript^superscriptΛ𝑎subscript𝑗𝑎subscript𝑗𝑎superscriptsubscriptsubscript𝑗𝑏1subscript𝑚𝑏subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑎superscriptsubscriptsubscript𝑗𝑏1subscript𝑚𝑏subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎for1subscript𝑗𝑎subscript𝑚𝑎\widehat{\Lambda^{a}}_{j_{a},j_{a}}\leftarrow\frac{\sum_{j_{b}=1}^{m_{b}}%\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{Q},t_{1},%\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}_{(j_{b},j%_{a})}^{a}\right]}{\sum_{j_{b}=1}^{m_{b}}\mathbb{E}_{\widehat{\Lambda^{b}},%\widehat{\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots%\mathfrak{s}_{N}}\left[\tilde{T}^{(j_{b},j_{a})}\right]}\quad\text{ for }1\leqj%_{a}\leq m_{a},over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ← divide start_ARG ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ] end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG for 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ,

and, for 1jb,kbmbformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏subscript𝑚𝑏1\leq j_{b},k_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1ja,kamaformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎1\leq j_{a},k_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT with (jb,ja)(kb,ka)subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎(j_{b},j_{a})\neq(k_{b},k_{a})( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ),

Q^(jb1)ma+ja,(kb1)ma+ka𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja),(kb,ka)]𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)].subscript^𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\widehat{Q}_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}\leftarrow\frac{\mathbb%{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N%},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}^{(j_{b},j_{a}),(k_{b%},k_{a})}\right]}{\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},%\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[%\tilde{T}^{(j_{b},j_{a})}\right]}.over^ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ← divide start_ARG blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG .

Assuming that the initial intensity is distributed according to a distribution represented by a column vectorπ0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we get that the conditional expectation of the number of RFQs at the bid while the intensity process is equal to (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) is141414We write Λb^~=Λb^Ima~^superscriptΛ𝑏tensor-product^superscriptΛ𝑏subscript𝐼subscript𝑚𝑎\widetilde{\widehat{\Lambda^{b}}}=\widehat{\Lambda^{b}}\otimes I_{m_{a}}over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG = over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Λa^~=ImbΛa^~^superscriptΛ𝑎tensor-productsubscript𝐼subscript𝑚𝑏^superscriptΛ𝑎\widetilde{\widehat{\Lambda^{a}}}=I_{m_{b}}\otimes\widehat{\Lambda^{a}}over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG = italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG.

𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja)b]subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑏\displaystyle\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{%Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}_%{(j_{b},j_{a})}^{b}\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ]
=\displaystyle==r=1N1𝔰r=b𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[1λtrb=λjb,b]superscriptsubscript𝑟1𝑁subscript1subscript𝔰𝑟𝑏subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]subscript1subscriptsuperscript𝜆𝑏subscript𝑡𝑟superscript𝜆subscript𝑗𝑏𝑏\displaystyle\sum_{r=1}^{N}1_{\mathfrak{s}_{r}=b}\mathbb{E}_{\widehat{\Lambda^%{b}},\widehat{\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},%\ldots\mathfrak{s}_{N}}\left[1_{\lambda^{b}_{t_{r}}=\lambda^{j_{b},b}}\right]∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT 1 start_POSTSUBSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_b end_POSTSUBSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ 1 start_POSTSUBSCRIPT italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ]
=\displaystyle==1π0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e1superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{1}{\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×r=1N1𝔰r=bπ0(n=1rexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e(jb1)ma+ja\displaystyle\quad\times\sum_{r=1}^{N}1_{\mathfrak{s}_{r}=b}\pi_{0}^{\prime}%\left(\prod_{n=1}^{r}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-%\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^%{\mathfrak{s}_{n}}}}\right)e^{(j_{b}-1)m_{a}+j_{a}}× ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT 1 start_POSTSUBSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_b end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT
×e(jb1)ma+ja(n=r+1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e.absentsuperscriptsuperscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsubscriptproduct𝑛𝑟1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\quad\times{e^{(j_{b}-1)m_{a}+j_{a}}}^{\prime}\left(\prod_{n=r+1}%^{N}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}%\right)e.× italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = italic_r + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e .

Similarly, we have

𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja)a]subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛subscript𝑗𝑏subscript𝑗𝑎𝑎\displaystyle\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{%Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}_%{(j_{b},j_{a})}^{a}\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ]
=\displaystyle==r=1N1𝔰r=a𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[1λtrb=λjb,b]superscriptsubscript𝑟1𝑁subscript1subscript𝔰𝑟𝑎subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]subscript1subscriptsuperscript𝜆𝑏subscript𝑡𝑟superscript𝜆subscript𝑗𝑏𝑏\displaystyle\sum_{r=1}^{N}1_{\mathfrak{s}_{r}=a}\mathbb{E}_{\widehat{\Lambda^%{b}},\widehat{\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},%\ldots\mathfrak{s}_{N}}\left[1_{\lambda^{b}_{t_{r}}=\lambda^{j_{b},b}}\right]∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT 1 start_POSTSUBSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_a end_POSTSUBSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ 1 start_POSTSUBSCRIPT italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ]
=\displaystyle==1π0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e1superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{1}{\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×r=1N1𝔰r=aπ0(n=1rexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e(jb1)ma+ja\displaystyle\quad\times\sum_{r=1}^{N}1_{\mathfrak{s}_{r}=a}\pi_{0}^{\prime}%\left(\prod_{n=1}^{r}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-%\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^%{\mathfrak{s}_{n}}}}\right)e^{(j_{b}-1)m_{a}+j_{a}}× ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT 1 start_POSTSUBSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_a end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT
×e(jb1)ma+ja(n=r+1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e.absentsuperscriptsuperscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsubscriptproduct𝑛𝑟1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\quad\times{e^{(j_{b}-1)m_{a}+j_{a}}}^{\prime}\left(\prod_{n=r+1}%^{N}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}%\right)e.× italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = italic_r + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e .

Regarding the time spent in (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ), we get

𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)]subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\displaystyle\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{%Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{T}^%{(j_{b},j_{a})}\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ]
=\displaystyle==0tN𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[1(λtb,λta)=(λjb,b,λja,a)]𝑑tsuperscriptsubscript0subscript𝑡𝑁subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]subscript1subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎differential-d𝑡\displaystyle\int_{0}^{t_{N}}\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{%\Lambda^{a}},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s%}_{N}}\left[1_{(\lambda^{b}_{t},\lambda^{a}_{t})=(\lambda^{j_{b},b},\lambda^{j%_{a},a})}\right]dt∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ 1 start_POSTSUBSCRIPT ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ] italic_d italic_t
=\displaystyle==1π0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e1superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{1}{\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×0tNπ0(n=1n(t)exp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)\displaystyle\quad\times\int_{0}^{t_{N}}\pi_{0}^{\prime}\left(\prod_{n=1}^{n(t%)}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)× ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ( italic_t ) end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG )
×exp((Q^Λb^~Λa^~)(ttn(t)))e(jb1)ma+jae(jb1)ma+jaexp((Q^Λb^~Λa^~)(tn(t)+1t))absent^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎𝑡subscript𝑡𝑛𝑡superscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsuperscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛𝑡1𝑡\displaystyle\quad\quad\quad\times\exp((\widehat{Q}-\widetilde{\widehat{%\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t-t_{n(t)}))e^{(j_{b}-1)m_{a}%+j_{a}}{e^{(j_{b}-1)m_{a}+j_{a}}}^{\prime}\exp((\widehat{Q}-\widetilde{%\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n(t)+1}-t))× roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_n ( italic_t ) end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n ( italic_t ) + 1 end_POSTSUBSCRIPT - italic_t ) )
×(n=n(t)+2Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)edtabsentsuperscriptsubscriptproduct𝑛𝑛𝑡2𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒𝑑𝑡\displaystyle\quad\quad\quad\times\left(\prod_{n=n(t)+2}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e\ dt× ( ∏ start_POSTSUBSCRIPT italic_n = italic_n ( italic_t ) + 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e italic_d italic_t

where n(t)=max{n,tn<t}𝑛𝑡𝑛subscript𝑡𝑛𝑡n(t)=\max\{n,t_{n}<t\}italic_n ( italic_t ) = roman_max { italic_n , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT < italic_t }.

This also writes

𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)]subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\displaystyle\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{%Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{T}^%{(j_{b},j_{a})}\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ]
=\displaystyle==1π0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e1superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{1}{\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×r=1N(π0(n=1r1exp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)\displaystyle\quad\times\sum_{r=1}^{N}\left(\pi_{0}^{\prime}\left(\prod_{n=1}^%{r-1}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}%\right)\right.× ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG )
×tr1trexp((Q^Λb^~Λa^~)(ttr1))e(jb1)ma+jae(jb1)ma+jaexp((Q^Λb^~Λa^~)(trt))dt\displaystyle\quad\quad\quad\times\int_{t_{r-1}}^{t_{r}}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t-t_{r-1}%))e^{(j_{b}-1)m_{a}+j_{a}}{e^{(j_{b}-1)m_{a}+j_{a}}}^{\prime}\exp((\widehat{Q}%-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{r}-t)%)dt× ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_t ) ) italic_d italic_t
×(n=r+1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e).\displaystyle\quad\quad\quad\times\left.\left(\prod_{n=r+1}^{N}\exp((\widehat{%Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-%t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e\right).× ( ∏ start_POSTSUBSCRIPT italic_n = italic_r + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e ) .

Using a similar reasoning, we have

𝔼Λb^,Λa^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja),(kb,ka)]subscript𝔼^superscriptΛ𝑏^superscriptΛ𝑎^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎\displaystyle\mathbb{E}_{\widehat{\Lambda^{b}},\widehat{\Lambda^{a}},\widehat{%Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[\tilde{n}^%{(j_{b},j_{a}),(k_{b},k_{a})}\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG , over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ]
=\displaystyle==Q^(jb1)ma+ja,(kb1)ma+kaπ0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)esubscript^𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{\widehat{Q}_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}}{%\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-\widetilde{\widehat{%\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{%\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG over^ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×0tNπ0(n=1n(t)exp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)\displaystyle\quad\times\int_{0}^{t_{N}}\pi_{0}^{\prime}\left(\prod_{n=1}^{n(t%)}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)× ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ( italic_t ) end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG )
×exp((Q^Λb^~Λa^~)(ttn(t)))e(jb1)ma+jae(kb1)ma+kaexp((Q^Λb^~Λa^~)(tn(t)+1t))absent^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎𝑡subscript𝑡𝑛𝑡superscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsuperscript𝑒subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛𝑡1𝑡\displaystyle\quad\quad\quad\times\exp((\widehat{Q}-\widetilde{\widehat{%\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t-t_{n(t)}))e^{(j_{b}-1)m_{a}%+j_{a}}{e^{(k_{b}-1)m_{a}+k_{a}}}^{\prime}\exp((\widehat{Q}-\widetilde{%\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n(t)+1}-t))× roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_n ( italic_t ) end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n ( italic_t ) + 1 end_POSTSUBSCRIPT - italic_t ) )
×(n=n(t)+2Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)edtabsentsuperscriptsubscriptproduct𝑛𝑛𝑡2𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒𝑑𝑡\displaystyle\quad\quad\quad\times\left(\prod_{n=n(t)+2}^{N}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{%n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e\ dt× ( ∏ start_POSTSUBSCRIPT italic_n = italic_n ( italic_t ) + 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e italic_d italic_t
=\displaystyle==Q^(jb1)ma+ja,(kb1)ma+kaπ0(n=1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)esubscript^𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscriptsubscript𝜋0superscriptsubscriptproduct𝑛1𝑁^𝑄~^superscriptΛ𝑏~^superscriptΛ𝑎subscript𝑡𝑛subscript𝑡𝑛1~^superscriptΛsubscript𝔰𝑛𝑒\displaystyle\frac{\widehat{Q}_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}}{%\pi_{0}^{\prime}\left(\prod_{n=1}^{N}\exp((\widehat{Q}-\widetilde{\widehat{%\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{%\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e}divide start_ARG over^ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e end_ARG
×r=1N(π0(n=1r1exp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)\displaystyle\quad\times\sum_{r=1}^{N}\left(\pi_{0}^{\prime}\left(\prod_{n=1}^%{r-1}\exp((\widehat{Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{%\Lambda^{a}}})(t_{n}-t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}%\right)\right.× ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG )
×tr1trexp((Q^Λb^~Λa^~)(ttr1))e(jb1)ma+jae(kb1)ma+kaexp((Q^Λb^~Λa^~)(trt))dt\displaystyle\quad\quad\quad\times\int_{t_{r-1}}^{t_{r}}\exp((\widehat{Q}-%\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t-t_{r-1}%))e^{(j_{b}-1)m_{a}+j_{a}}{e^{(k_{b}-1)m_{a}+k_{a}}}^{\prime}\exp((\widehat{Q}%-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{r}-t)%)dt× ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_t ) ) italic_d italic_t
×(n=r+1Nexp((Q^Λb^~Λa^~)(tntn1))Λ𝔰n^~)e).\displaystyle\quad\quad\quad\times\left.\left(\prod_{n=r+1}^{N}\exp((\widehat{%Q}-\widetilde{\widehat{\Lambda^{b}}}-\widetilde{\widehat{\Lambda^{a}}})(t_{n}-%t_{n-1}))\widetilde{\widehat{\Lambda^{\mathfrak{s}_{n}}}}\right)e\right).× ( ∏ start_POSTSUBSCRIPT italic_n = italic_r + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( over^ start_ARG italic_Q end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG end_ARG - over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG end_ARG ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG over^ start_ARG roman_Λ start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG end_ARG ) italic_e ) .

These quantities can be computed iteratively and it is noteworthy that we do not need to compute the denominators as they cancel out when we update Λb^^superscriptΛ𝑏\widehat{\Lambda^{b}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG, Λa^^superscriptΛ𝑎\widehat{\Lambda^{a}}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG and Q^^𝑄\widehat{Q}over^ start_ARG italic_Q end_ARG. It must also be noted that the only computational difficulty lies in finding a scaling factor to avoid ending up with very low or very high values.

2.2.3 Estimating the current state

Once an estimation of the parameters has been carried out, it is possible to estimate the state of the intensity processes at any point in time t𝑡titalic_t. If indeed we consider a prior probability distribution for the initial value λ0=(λ0b,λ0a)subscript𝜆0subscriptsuperscript𝜆𝑏0subscriptsuperscript𝜆𝑎0\lambda_{0}=(\lambda^{b}_{0},\lambda^{a}_{0})italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) of intensity process represented by a column vector π0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, then, given a sequence of observed RFQs times 0=t0<t1<<tn(t)0subscript𝑡0subscript𝑡1annotatedsubscript𝑡𝑛absent𝑡0=t_{0}<t_{1}<\ldots<t_{n}(\leq t)0 = italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( ≤ italic_t ) prior to time t𝑡titalic_t along with their associated sides 𝔰1,𝔰nsubscript𝔰1subscript𝔰𝑛\mathfrak{s}_{1},\ldots\mathfrak{s}_{n}fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, the a posteriori distribution πtsubscript𝜋𝑡\pi_{t}italic_π start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT of (λtb,λta)subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡(\lambda^{b}_{t},\lambda^{a}_{t})( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) writes

(πt)(jb1)ma+jaπ0(r=1nexp((QΛ~bΛ~a)(trtr1))Λ~𝔰r)exp((QΛ~bΛ~a)(ttn))e(jb1)ma+japroportional-tosubscriptsubscript𝜋𝑡subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsubscript𝜋0superscriptsubscriptproduct𝑟1𝑛𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑟subscript𝑡𝑟1superscript~Λsubscript𝔰𝑟𝑄superscript~Λ𝑏superscript~Λ𝑎𝑡subscript𝑡𝑛superscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎(\pi_{t})_{(j_{b}-1)m_{a}+j_{a}}\propto\pi_{0}^{\prime}\left(\prod_{r=1}^{n}%\exp((Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a})(t_{r}-t_{r-1}))\tilde{\Lambda%}^{\mathfrak{s}_{r}}\right)\exp((Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a})(t-%t_{n}))e^{(j_{b}-1)m_{a}+j_{a}}( italic_π start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∝ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT

i.e.

πt=π0(r=1nexp((QΛ~bΛ~a)(trtr1))Λ~𝔰r)exp((QΛ~bΛ~a)(ttn))e(jb1)ma+jaπ0(r=1nexp((QΛ~bΛ~a)(trtr1))Λ~𝔰r)exp((QΛ~bΛ~a)(ttn))e.subscript𝜋𝑡superscriptsubscript𝜋0superscriptsubscriptproduct𝑟1𝑛𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑟subscript𝑡𝑟1superscript~Λsubscript𝔰𝑟𝑄superscript~Λ𝑏superscript~Λ𝑎𝑡subscript𝑡𝑛superscript𝑒subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎superscriptsubscript𝜋0superscriptsubscriptproduct𝑟1𝑛𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑟subscript𝑡𝑟1superscript~Λsubscript𝔰𝑟𝑄superscript~Λ𝑏superscript~Λ𝑎𝑡subscript𝑡𝑛𝑒\pi_{t}=\frac{\pi_{0}^{\prime}\left(\prod_{r=1}^{n}\exp((Q-\tilde{\Lambda}^{b}%-\tilde{\Lambda}^{a})(t_{r}-t_{r-1}))\tilde{\Lambda}^{\mathfrak{s}_{r}}\right)%\exp((Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a})(t-t_{n}))e^{(j_{b}-1)m_{a}+j_%{a}}}{\pi_{0}^{\prime}\left(\prod_{r=1}^{n}\exp((Q-\tilde{\Lambda}^{b}-\tilde{%\Lambda}^{a})(t_{r}-t_{r-1}))\tilde{\Lambda}^{\mathfrak{s}_{r}}\right)\exp((Q-%\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a})(t-t_{n}))e}.italic_π start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = divide start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) italic_e start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t - italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) italic_e end_ARG .(2)

3 New notions of price

3.1 A micro-price for RFQ markets

3.1.1 Definition

In [32], Stoikov introduced the notion of micro-price for an asset traded through a limit order book. It is defined as the asymptotic value of the expected mid-price, given all the information available (in the limit order book).

It is reasonable to extend the ideas introduced in [32] to RFQ markets through the use of our model for RFQ arrival. If we consider a reference price process,151515In the case of corporate bonds, it can be CBBT, CP+, or another composite. (St)tsubscriptsubscript𝑆𝑡𝑡(S_{t})_{t}( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, it is commonplace to assume a Brownian dynamics dSt=σdWt𝑑subscript𝑆𝑡𝜎𝑑subscript𝑊𝑡dS_{t}=\sigma dW_{t}italic_d italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_σ italic_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. However, if we know the current state of liquidity, it makes more sense to consider a dynamics of the form

dSt=σdWt+κ(λtaλtb)dt𝑑subscript𝑆𝑡𝜎𝑑subscript𝑊𝑡𝜅subscriptsuperscript𝜆𝑎𝑡subscriptsuperscript𝜆𝑏𝑡𝑑𝑡dS_{t}=\sigma dW_{t}+\kappa(\lambda^{a}_{t}-\lambda^{b}_{t})dtitalic_d italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_σ italic_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) italic_d italic_t

where κ𝜅\kappaitalic_κ is a nonnegative constant. Then, the micro-price at time t𝑡titalic_t is naturally defined by

Stmicro=limT+𝔼[STSt,λtb,λta]=St+κlimT+𝔼[tT(λsaλsb)𝑑s|λtb,λta]subscriptsuperscript𝑆micro𝑡subscript𝑇𝔼delimited-[]conditionalsubscript𝑆𝑇subscript𝑆𝑡subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡subscript𝑆𝑡𝜅subscript𝑇𝔼delimited-[]conditionalsuperscriptsubscript𝑡𝑇subscriptsuperscript𝜆𝑎𝑠subscriptsuperscript𝜆𝑏𝑠differential-d𝑠subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡S^{\text{micro}}_{t}=\lim_{T\to+\infty}\mathbb{E}[S_{T}\mid S_{t},\lambda^{b}_%{t},\lambda^{a}_{t}]=S_{t}+\kappa\lim_{T\to+\infty}\mathbb{E}\left[\left.\int_%{t}^{T}(\lambda^{a}_{s}-\lambda^{b}_{s})\,ds\right|\lambda^{b}_{t},\lambda^{a}%_{t}\right]italic_S start_POSTSUPERSCRIPT micro end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_lim start_POSTSUBSCRIPT italic_T → + ∞ end_POSTSUBSCRIPT blackboard_E [ italic_S start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∣ italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ] = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ roman_lim start_POSTSUBSCRIPT italic_T → + ∞ end_POSTSUBSCRIPT blackboard_E [ ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_d italic_s | italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ]

if that limit exists.161616For bonds, Brownian dynamics can only be valid in the short run. Nevertheless, we consider a long-term limit to define the micro-price. This may seem problematic at first sight, but in our model, the long-term limit corresponds to a time horizon equivalent to that of the return to a symmetric state of liquidity, which is typically short.

3.1.2 Mathematical analysis

To study this notion, let us define

vT(t,λb,λa)=𝔼[tT(λsaλsb)𝑑s|λtb=λb,λta=λa].subscript𝑣𝑇𝑡superscript𝜆𝑏superscript𝜆𝑎𝔼delimited-[]formulae-sequenceconditionalsuperscriptsubscript𝑡𝑇subscriptsuperscript𝜆𝑎𝑠subscriptsuperscript𝜆𝑏𝑠differential-d𝑠subscriptsuperscript𝜆𝑏𝑡superscript𝜆𝑏subscriptsuperscript𝜆𝑎𝑡superscript𝜆𝑎v_{T}(t,\lambda^{b},\lambda^{a})=\mathbb{E}\left[\left.\int_{t}^{T}(\lambda^{a%}_{s}-\lambda^{b}_{s})ds\right|\lambda^{b}_{t}=\lambda^{b},\lambda^{a}_{t}=%\lambda^{a}\right].italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) = blackboard_E [ ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_d italic_s | italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ] .

If we write vT(t)subscript𝑣𝑇𝑡v_{T}(t)italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) the vector with coordinates (vT(t,λb,jb,λa,ja))1jbmb,1jamasubscriptsubscript𝑣𝑇𝑡superscript𝜆𝑏subscript𝑗𝑏superscript𝜆𝑎subscript𝑗𝑎formulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎(v_{T}(t,\lambda^{b,j_{b}},\lambda^{a,j_{a}}))_{1\leq j_{b}\leq m_{b},1\leq j_%{a}\leq m_{a}}( italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_λ start_POSTSUPERSCRIPT italic_b , italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT in lexicographic order, then we have that vTsubscript𝑣𝑇v_{T}italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT solves

ddtvT(t)+ImbλvecaλvecbIma+QvT(t)=0andvT(T)=0formulae-sequence𝑑𝑑𝑡subscript𝑣𝑇𝑡tensor-productsubscript𝐼subscript𝑚𝑏superscriptsubscript𝜆vec𝑎tensor-productsuperscriptsubscript𝜆vec𝑏subscript𝐼subscript𝑚𝑎𝑄subscript𝑣𝑇𝑡0andsubscript𝑣𝑇𝑇0\frac{d}{dt}v_{T}(t)+I_{m_{b}}\otimes\lambda_{\text{vec}}^{a}-\lambda_{\text{%vec}}^{b}\otimes I_{m_{a}}+Qv_{T}(t)=0\quad\text{and}\quad v_{T}(T)=0divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) + italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_Q italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) = 0 and italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_T ) = 0

where λvecb=(λb,1,,λb,mb)superscriptsubscript𝜆vec𝑏superscriptsuperscript𝜆𝑏1superscript𝜆𝑏subscript𝑚𝑏\lambda_{\text{vec}}^{b}=(\lambda^{b,1},\ldots,\lambda^{b,m_{b}})^{\prime}italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_b , 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_b , italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and λveca=(λa,1,,λa,ma)superscriptsubscript𝜆vec𝑎superscriptsuperscript𝜆𝑎1superscript𝜆𝑎subscript𝑚𝑎\lambda_{\text{vec}}^{a}=(\lambda^{a,1},\ldots,\lambda^{a,m_{a}})^{\prime}italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_a , 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_a , italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, i.e.

vT(t)=tTexp(Q(st))(ImbλvecaλvecbIma)𝑑s.subscript𝑣𝑇𝑡superscriptsubscript𝑡𝑇𝑄𝑠𝑡tensor-productsubscript𝐼subscript𝑚𝑏superscriptsubscript𝜆vec𝑎tensor-productsuperscriptsubscript𝜆vec𝑏subscript𝐼subscript𝑚𝑎differential-d𝑠v_{T}(t)=\int_{t}^{T}\exp(Q(s-t))(I_{m_{b}}\otimes\lambda_{\text{vec}}^{a}-%\lambda_{\text{vec}}^{b}\otimes I_{m_{a}})ds.italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) = ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_exp ( italic_Q ( italic_s - italic_t ) ) ( italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_d italic_s .

Let us now assume as in Appendix A.1 that (λsb,λsa)ssubscriptsubscriptsuperscript𝜆𝑏𝑠subscriptsuperscript𝜆𝑎𝑠𝑠(\lambda^{b}_{s},\lambda^{a}_{s})_{s}( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and (λsa,λsb)ssubscriptsubscriptsuperscript𝜆𝑎𝑠subscriptsuperscript𝜆𝑏𝑠𝑠(\lambda^{a}_{s},\lambda^{b}_{s})_{s}( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT have the same distribution. Then, it is straightforward to see that vT(t,λ,λ)=0subscript𝑣𝑇𝑡𝜆𝜆0v_{T}(t,\lambda,\lambda)=0italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_λ , italic_λ ) = 0 for all λ{λ1,,λm}𝜆superscript𝜆1superscript𝜆𝑚\lambda\in\{\lambda^{1},\ldots,\lambda^{m}\}italic_λ ∈ { italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT }. Moreover, writing λvec=(λ1,,λm)subscript𝜆vecsuperscriptsuperscript𝜆1superscript𝜆𝑚\lambda_{\text{vec}}=(\lambda^{1},\ldots,\lambda^{m})^{\prime}italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, we have that ImbλvecaλvecbIma=ImλvecλvecImtensor-productsubscript𝐼subscript𝑚𝑏superscriptsubscript𝜆vec𝑎tensor-productsuperscriptsubscript𝜆vec𝑏subscript𝐼subscript𝑚𝑎tensor-productsubscript𝐼𝑚subscript𝜆vectensor-productsubscript𝜆vecsubscript𝐼𝑚I_{m_{b}}\otimes\lambda_{\text{vec}}^{a}-\lambda_{\text{vec}}^{b}\otimes I_{m_%{a}}=I_{m}\otimes\lambda_{\text{vec}}-\lambda_{\text{vec}}\otimes I_{m}italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT has all coordinates corresponding to symmetric states equal to00. Therefore, if we denote by the superscript nsns{}^{\text{ns}}start_FLOATSUPERSCRIPT ns end_FLOATSUPERSCRIPT vectors and matrices where all symmetric states have been dropped, we have:

vTns(t)=tTexp(Qns(st))(ImλvecλvecIm)ns𝑑s.subscriptsuperscript𝑣ns𝑇𝑡superscriptsubscript𝑡𝑇superscript𝑄ns𝑠𝑡superscripttensor-productsubscript𝐼𝑚subscript𝜆vectensor-productsubscript𝜆vecsubscript𝐼𝑚nsdifferential-d𝑠v^{\text{ns}}_{T}(t)=\int_{t}^{T}\exp(Q^{\text{ns}}(s-t))(I_{m}\otimes\lambda_%{\text{vec}}-\lambda_{\text{vec}}\otimes I_{m})^{\text{ns}}ds.italic_v start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) = ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_exp ( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT ( italic_s - italic_t ) ) ( italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT italic_d italic_s .

If we add the assumption that the matrix Q𝑄Qitalic_Q is such that, in each asymmetric state, the intensity associated with returning to at least one symmetric state is positive, then Qnssuperscript𝑄nsQ^{\text{ns}}italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT is a strictly diagonally-dominant matrix with negative diagonal terms and we have therefore, from Gershgorin circle theorem, that Qnssuperscript𝑄nsQ^{\text{ns}}italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT is invertible and that limT+exp(QnsT)=0subscript𝑇superscript𝑄ns𝑇0\lim_{T\to+\infty}\exp(Q^{\text{ns}}T)=0roman_lim start_POSTSUBSCRIPT italic_T → + ∞ end_POSTSUBSCRIPT roman_exp ( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT italic_T ) = 0. We conclude that

vTns(t)subscriptsuperscript𝑣ns𝑇𝑡\displaystyle v^{\text{ns}}_{T}(t)italic_v start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t )=\displaystyle==(Qns)1exp(Qns(Tt))(ImλvecλvecIm)ns(Qns)1(ImλvecλvecIm)nssuperscriptsuperscript𝑄ns1superscript𝑄ns𝑇𝑡superscripttensor-productsubscript𝐼𝑚subscript𝜆vectensor-productsubscript𝜆vecsubscript𝐼𝑚nssuperscriptsuperscript𝑄ns1superscripttensor-productsubscript𝐼𝑚subscript𝜆vectensor-productsubscript𝜆vecsubscript𝐼𝑚ns\displaystyle(Q^{\text{ns}})^{-1}\exp(Q^{\text{ns}}(T-t))(I_{m}\otimes\lambda_%{\text{vec}}-\lambda_{\text{vec}}\otimes I_{m})^{\text{ns}}-(Q^{\text{ns}})^{-%1}(I_{m}\otimes\lambda_{\text{vec}}-\lambda_{\text{vec}}\otimes I_{m})^{\text{%ns}}( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_exp ( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT ( italic_T - italic_t ) ) ( italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT - ( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT(3)
T+(Qns)1(ImλvecλvecIm)ns.subscript𝑇absentsuperscriptsuperscript𝑄ns1superscripttensor-productsubscript𝐼𝑚subscript𝜆vectensor-productsubscript𝜆vecsubscript𝐼𝑚ns\displaystyle\to_{T\to+\infty}-(Q^{\text{ns}})^{-1}(I_{m}\otimes\lambda_{\text%{vec}}-\lambda_{\text{vec}}\otimes I_{m})^{\text{ns}}.→ start_POSTSUBSCRIPT italic_T → + ∞ end_POSTSUBSCRIPT - ( italic_Q start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊗ italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT vec end_POSTSUBSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ns end_POSTSUPERSCRIPT .

Under the above assumptions, we can therefore define v(λb,λa)=limT+vT(t,λb,λa)𝑣superscript𝜆𝑏superscript𝜆𝑎subscript𝑇subscript𝑣𝑇𝑡superscript𝜆𝑏superscript𝜆𝑎v(\lambda^{b},\lambda^{a})=\lim_{T\to+\infty}v_{T}(t,\lambda^{b},\lambda^{a})italic_v ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) = roman_lim start_POSTSUBSCRIPT italic_T → + ∞ end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) and write

Stmicro=St+κv(λtb,λta).subscriptsuperscript𝑆micro𝑡subscript𝑆𝑡𝜅𝑣subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡S^{\text{micro}}_{t}=S_{t}+\kappa v(\lambda^{b}_{t},\lambda^{a}_{t}).italic_S start_POSTSUPERSCRIPT micro end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ italic_v ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) .

Of course, in practice, one never knows the current state of liquidity and rather uses a probability distributionπ𝜋\piitalic_π over the states. Then, one gets at time t𝑡titalic_t a micro-price with mean

S¯tmicro=St+κ1jbm,1jamπjb,jav(λjb,λja)subscriptsuperscript¯𝑆micro𝑡subscript𝑆𝑡𝜅subscriptformulae-sequence1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚superscript𝜋subscript𝑗𝑏subscript𝑗𝑎𝑣superscript𝜆subscript𝑗𝑏superscript𝜆subscript𝑗𝑎\bar{S}^{\text{micro}}_{t}=S_{t}+\kappa\sum_{1\leq j_{b}\leq m,1\leq j_{a}\leqm%}\pi^{j_{b},j_{a}}v(\lambda^{j_{b}},\lambda^{j_{a}})over¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT micro end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_v ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT )(4)

and standard deviation171717This standard deviation only quantifies the uncertainty linked to the estimation of the current market liquidity state for given values of the model parameters. given by

κ1jbm,1jamπjb,jav(λjb,λja)2(1jbm,1jamπjb,jav(λjb,λja))2.𝜅subscriptformulae-sequence1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚superscript𝜋subscript𝑗𝑏subscript𝑗𝑎𝑣superscriptsuperscript𝜆subscript𝑗𝑏superscript𝜆subscript𝑗𝑎2superscriptsubscriptformulae-sequence1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚superscript𝜋subscript𝑗𝑏subscript𝑗𝑎𝑣superscript𝜆subscript𝑗𝑏superscript𝜆subscript𝑗𝑎2\kappa\sqrt{\sum_{1\leq j_{b}\leq m,1\leq j_{a}\leq m}\pi^{j_{b},j_{a}}v(%\lambda^{j_{b}},\lambda^{j_{a}})^{2}-\left(\sum_{1\leq j_{b}\leq m,1\leq j_{a}%\leq m}\pi^{j_{b},j_{a}}v(\lambda^{j_{b}},\lambda^{j_{a}})\right)^{2}}.italic_κ square-root start_ARG ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_v ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_v ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .

3.1.3 Main remarks on our assumptions to obtain a micro-price

To be able to define the notion of micro-price and ensure that the limit exists, we imposed three structural assumptions to our model for the flow of RFQs. We indeed imposed that:

  • the set of possible intensities is shared across the bid and the ask;

  • the transition matrix Q𝑄Qitalic_Q is both that of (λtb,λta)subscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡(\lambda^{b}_{t},\lambda^{a}_{t})( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) and (λta,λtb)subscriptsuperscript𝜆𝑎𝑡subscriptsuperscript𝜆𝑏𝑡(\lambda^{a}_{t},\lambda^{b}_{t})( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) – in the case of two liquidity states, high and low, this means that the chance of any transition leading to or from an unbalanced state does not depend on the side of the imbalance;

  • any unbalanced state has a chance to be followed by at least one balanced state.

These assumptions are quite light and natural. What is more questionable is the linearity assumption in the drift. It is, however, important to keep in mind that intensities are not observed directly; only the probability of being in the different states can be estimated. This results in noisy estimates of κ𝜅\kappaitalic_κ, as we shall see. Parsimony clearly guided our modeling choice.

3.2 A fair transfer price

3.2.1 From a market making model to a fair transfer price

We now want to go beyond the notion of micro-price and use ideas coming from the OTC market making literature to define a fair transfer price.

We consider a theoretical market maker receiving RFQs to buy and sell an asset (for a given unique size z𝑧zitalic_z in this model). We model the number of RFQs at the bid and at the ask by a bidimensional MMPP as above and do not impose here, for the sake of generality, our symmetry assumptions that guaranteed the well-posedness of the definition of micro-price.

We consider a reference price process (St)tsubscriptsubscript𝑆𝑡𝑡(S_{t})_{t}( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and we assume that

dSt=σdWt+κ(λtaλtb)dt.𝑑subscript𝑆𝑡𝜎𝑑subscript𝑊𝑡𝜅subscriptsuperscript𝜆𝑎𝑡subscriptsuperscript𝜆𝑏𝑡𝑑𝑡dS_{t}=\sigma dW_{t}+\kappa(\lambda^{a}_{t}-\lambda^{b}_{t})dt.italic_d italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_σ italic_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) italic_d italic_t .

Upon receiving at time t𝑡titalic_t an RFQ at the bid (resp. at the ask), the market maker answers a price Stb=Stδtbsuperscriptsubscript𝑆𝑡𝑏subscript𝑆𝑡superscriptsubscript𝛿𝑡𝑏S_{t}^{b}=S_{t}-\delta_{t}^{b}italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT (resp. Sta=St+δtasuperscriptsubscript𝑆𝑡𝑎subscript𝑆𝑡superscriptsubscript𝛿𝑡𝑎S_{t}^{a}=S_{t}+\delta_{t}^{a}italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT) and this leads to a trade with probability fb(StStb)=fb(δtb)superscript𝑓𝑏subscript𝑆𝑡superscriptsubscript𝑆𝑡𝑏superscript𝑓𝑏superscriptsubscript𝛿𝑡𝑏f^{b}(S_{t}-S_{t}^{b})=f^{b}(\delta_{t}^{b})italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) = italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) (resp. fa(StaSt)=fa(δta)superscript𝑓𝑎superscriptsubscript𝑆𝑡𝑎subscript𝑆𝑡superscript𝑓𝑎superscriptsubscript𝛿𝑡𝑎f^{a}(S_{t}^{a}-S_{t})=f^{a}(\delta_{t}^{a})italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) = italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT )) where fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT (resp. fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT) is a decreasing function from 1111 to 00 (sometimes called S-function or S-curve). The inventory process (qt)tsubscriptsubscript𝑞𝑡𝑡(q_{t})_{t}( italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT of the market maker evolves subsequently as

dqt=zdNtbzdNta,𝑑subscript𝑞𝑡𝑧𝑑subscriptsuperscript𝑁𝑏𝑡𝑧𝑑subscriptsuperscript𝑁𝑎𝑡dq_{t}=zdN^{b}_{t}-zdN^{a}_{t},italic_d italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_z italic_d italic_N start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_z italic_d italic_N start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,

where z>0𝑧0z>0italic_z > 0 is the (constant) transaction size. The cash process (Xt)tsubscriptsubscript𝑋𝑡𝑡(X_{t})_{t}( italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT evolves therefore as

dXt=zStadNtazStbdNtb=Stdqt+zδtbdNtb+zδtadNta𝑑subscript𝑋𝑡𝑧subscriptsuperscript𝑆𝑎𝑡𝑑subscriptsuperscript𝑁𝑎𝑡𝑧subscriptsuperscript𝑆𝑏𝑡𝑑subscriptsuperscript𝑁𝑏𝑡subscript𝑆𝑡𝑑subscript𝑞𝑡𝑧superscriptsubscript𝛿𝑡𝑏𝑑superscriptsubscript𝑁𝑡𝑏𝑧superscriptsubscript𝛿𝑡𝑎𝑑superscriptsubscript𝑁𝑡𝑎dX_{t}=zS^{a}_{t}dN^{a}_{t}-zS^{b}_{t}dN^{b}_{t}=-S_{t}dq_{t}+z\delta_{t}^{b}%dN_{t}^{b}+z\delta_{t}^{a}dN_{t}^{a}italic_d italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_z italic_S start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_d italic_N start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_z italic_S start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_d italic_N start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = - italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_d italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_z italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + italic_z italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT

and the PnL process (PnLt)t=(Xt+qtSt)tsubscriptsubscriptPnL𝑡𝑡subscriptsubscript𝑋𝑡subscript𝑞𝑡subscript𝑆𝑡𝑡(\text{PnL}_{t})_{t}=(X_{t}+q_{t}S_{t})_{t}( PnL start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT as

dPnLt=zδtbdNtb+zδtadNta+σqtdWt+κ(λtaλtb)qtdt.𝑑subscriptPnL𝑡𝑧superscriptsubscript𝛿𝑡𝑏𝑑superscriptsubscript𝑁𝑡𝑏𝑧superscriptsubscript𝛿𝑡𝑎𝑑superscriptsubscript𝑁𝑡𝑎𝜎subscript𝑞𝑡𝑑subscript𝑊𝑡𝜅superscriptsubscript𝜆𝑡𝑎superscriptsubscript𝜆𝑡𝑏subscript𝑞𝑡𝑑𝑡d\text{PnL}_{t}=z\delta_{t}^{b}dN_{t}^{b}+z\delta_{t}^{a}dN_{t}^{a}+\sigma q_{%t}dW_{t}+\kappa(\lambda_{t}^{a}-\lambda_{t}^{b})q_{t}dt.italic_d PnL start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_z italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + italic_z italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + italic_σ italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_κ ( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_d italic_t .

A market maker wishing to capture the bid-ask spread while mitigating the risk (see [10, 11, 22]) typically maximizes, over the set of predictable processes (δtb)tsubscriptsubscriptsuperscript𝛿𝑏𝑡𝑡(\delta^{b}_{t})_{t}( italic_δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and (δta)tsubscriptsubscriptsuperscript𝛿𝑎𝑡𝑡(\delta^{a}_{t})_{t}( italic_δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, the objective function

𝔼[0T(zλtbδtbfb(δtb)+zλtaδtafa(δta)+κ(λtaλtb)qtγ2σ2qt2)𝑑t]𝔼delimited-[]superscriptsubscript0𝑇𝑧superscriptsubscript𝜆𝑡𝑏superscriptsubscript𝛿𝑡𝑏superscript𝑓𝑏superscriptsubscript𝛿𝑡𝑏𝑧superscriptsubscript𝜆𝑡𝑎superscriptsubscript𝛿𝑡𝑎superscript𝑓𝑎superscriptsubscript𝛿𝑡𝑎𝜅superscriptsubscript𝜆𝑡𝑎superscriptsubscript𝜆𝑡𝑏subscript𝑞𝑡𝛾2superscript𝜎2superscriptsubscript𝑞𝑡2differential-d𝑡\displaystyle\mathbb{E}\left[\int_{0}^{T}\left(z\lambda_{t}^{b}\delta_{t}^{b}f%^{b}(\delta_{t}^{b})+z\lambda_{t}^{a}\delta_{t}^{a}f^{a}(\delta_{t}^{a})+%\kappa(\lambda_{t}^{a}-\lambda_{t}^{b})q_{t}-\frac{\gamma}{2}\sigma^{2}q_{t}^{%2}\right)dt\right]blackboard_E [ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_z italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) + italic_z italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) + italic_κ ( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - divide start_ARG italic_γ end_ARG start_ARG 2 end_ARG italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_d italic_t ]

for a given risk aversion parameter γ>0𝛾0\gamma>0italic_γ > 0.

Assuming that the theoretical market maker is able to identify in which state (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) the market is at any point in time, the value functions (θjb,ja)1jbmb,1jamasubscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎formulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎(\theta^{j_{b},j_{a}})_{1\leq j_{b}\leq m_{b},1\leq j_{a}\leq m_{a}}( italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT satisfy the following system of Hamilton-Jacobi-Bellman (HJB) equations:

tθjb,ja(t,q)+κ(λja,aλjb,b)q12γσ2q2+1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaθkb,ka(t,q)subscript𝑡superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝜅superscript𝜆subscript𝑗𝑎𝑎superscript𝜆subscript𝑗𝑏𝑏𝑞12𝛾superscript𝜎2superscript𝑞2subscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscript𝜃subscript𝑘𝑏subscript𝑘𝑎𝑡𝑞\displaystyle\partial_{t}\theta^{j_{b},j_{a}}(t,q)+\kappa(\lambda^{j_{a},a}-%\lambda^{j_{b},b})q-\frac{1}{2}\gamma\sigma^{2}q^{2}+\sum_{1\leq k_{b}\leq m_{%b},1\leq k_{a}\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}\theta^{%k_{b},k_{a}}(t,q)∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) italic_q - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q )
+zλjb,bHb(θjb,ja(t,q)θjb,ja(t,q+z)z)+zλja,aHa(θjb,ja(t,q)θjb,ja(t,qz)z)=0𝑧superscript𝜆subscript𝑗𝑏𝑏superscript𝐻𝑏superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧𝑧superscript𝜆subscript𝑗𝑎𝑎superscript𝐻𝑎superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧0\displaystyle+z\lambda^{j_{b},b}H^{b}\left(\frac{\theta^{j_{b},j_{a}}(t,q)-%\theta^{j_{b},j_{a}}(t,q+z)}{z}\right)+z\lambda^{j_{a},a}H^{a}\left(\frac{%\theta^{j_{b},j_{a}}(t,q)-\theta^{j_{b},j_{a}}(t,q-z)}{z}\right)=0+ italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q + italic_z ) end_ARG start_ARG italic_z end_ARG ) + italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q - italic_z ) end_ARG start_ARG italic_z end_ARG ) = 0

with terminal condition θjb,ja(T,q)=0superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑇𝑞0\theta^{j_{b},j_{a}}(T,q)=0italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T , italic_q ) = 0, whereHb/a(p)=supδfb/a(δ)(δp).superscript𝐻𝑏𝑎𝑝𝛿supremumsuperscript𝑓𝑏𝑎𝛿𝛿𝑝H^{b/a}(p)=\underset{\delta\in\mathbb{R}}{\sup}f^{b/a}(\delta)(\delta-p).italic_H start_POSTSUPERSCRIPT italic_b / italic_a end_POSTSUPERSCRIPT ( italic_p ) = start_UNDERACCENT italic_δ ∈ blackboard_R end_UNDERACCENT start_ARG roman_sup end_ARG italic_f start_POSTSUPERSCRIPT italic_b / italic_a end_POSTSUPERSCRIPT ( italic_δ ) ( italic_δ - italic_p ) .

Under mild assumptions on the functions fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT (see for instance [7]), the optimal bid and ask quotes of the market maker if the current state of the market is (λjb,b,λja,a)superscript𝜆subscript𝑗𝑏𝑏superscript𝜆subscript𝑗𝑎𝑎(\lambda^{j_{b},b},\lambda^{j_{a},a})( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) write

δtb,i,=δ¯b(θjb,ja(t,qt)θjb,ja(t,qt+z)z)andδta,i,=δ¯a(θjb,ja(t,qt)θjb,ja(t,qtz)z),formulae-sequencesubscriptsuperscript𝛿𝑏𝑖𝑡superscript¯𝛿𝑏superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝑞limit-from𝑡superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝑞limit-from𝑡𝑧𝑧andsubscriptsuperscript𝛿𝑎𝑖𝑡superscript¯𝛿𝑎superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝑞limit-from𝑡superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝑞limit-from𝑡𝑧𝑧\delta^{b,i,\star}_{t}=\bar{\delta}^{b}\left(\frac{\theta^{j_{b},j_{a}}(t,q_{t%-})-\theta^{j_{b},j_{a}}(t,q_{t-}+z)}{z}\right)\quad\text{and}\quad\delta^{a,i%,\star}_{t}=\bar{\delta}^{a}\left(\frac{\theta^{j_{b},j_{a}}(t,q_{t-})-\theta^%{j_{b},j_{a}}(t,q_{t-}-z)}{z}\right),italic_δ start_POSTSUPERSCRIPT italic_b , italic_i , ⋆ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q start_POSTSUBSCRIPT italic_t - end_POSTSUBSCRIPT ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q start_POSTSUBSCRIPT italic_t - end_POSTSUBSCRIPT + italic_z ) end_ARG start_ARG italic_z end_ARG ) and italic_δ start_POSTSUPERSCRIPT italic_a , italic_i , ⋆ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q start_POSTSUBSCRIPT italic_t - end_POSTSUBSCRIPT ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q start_POSTSUBSCRIPT italic_t - end_POSTSUBSCRIPT - italic_z ) end_ARG start_ARG italic_z end_ARG ) ,

where

δ¯b(p)=fb1(Hb(p))andδ¯a(p)=fa1(Ha(p)).formulae-sequencesuperscript¯𝛿𝑏𝑝superscriptsuperscript𝑓𝑏1superscriptsuperscript𝐻𝑏𝑝andsuperscript¯𝛿𝑎𝑝superscriptsuperscript𝑓𝑎1superscriptsuperscript𝐻𝑎𝑝\displaystyle\bar{\delta}^{b}(p)={f^{b}}^{-1}\left(-{H^{b}}^{\prime}(p)\right)%\quad\text{and}\quad\bar{\delta}^{a}(p)={f^{a}}^{-1}\left(-{H^{a}}^{\prime}(p)%\right).over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( italic_p ) = italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( - italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_p ) ) and over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_p ) = italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( - italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_p ) ) .

If the matrix Q𝑄Qitalic_Q is irreducible, an ergodic limit exists, i.e. there exists a constant c𝑐citalic_c such that we have limTθjb,ja(t,q)c(Tt)=θjb,ja(q)subscript𝑇superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑐𝑇𝑡subscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑞\lim_{T\to\infty}\theta^{j_{b},j_{a}}(t,q)-c(T-t)=\theta^{j_{b},j_{a}}_{\infty%}(q)roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_c ( italic_T - italic_t ) = italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_q ) (see[24] for a general framework), and we can define a time-independent notion of skew by

skewjb,ja=δ¯a(θjb,ja(0)θjb,ja(z)z)δ¯b(θjb,ja(0)θjb,ja(z)z).subscriptsuperscriptskewsubscript𝑗𝑏subscript𝑗𝑎superscript¯𝛿𝑎subscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎0subscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑧𝑧superscript¯𝛿𝑏subscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎0subscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑧𝑧\text{skew}^{j_{b},j_{a}}_{\infty}=\bar{\delta}^{a}\left(\frac{\theta^{j_{b},j%_{a}}_{\infty}(0)-\theta^{j_{b},j_{a}}_{\infty}(-z)}{z}\right)-\bar{\delta}^{b%}\left(\frac{\theta^{j_{b},j_{a}}_{\infty}(0)-\theta^{j_{b},j_{a}}_{\infty}(z)%}{z}\right).skew start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( 0 ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( - italic_z ) end_ARG start_ARG italic_z end_ARG ) - over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( 0 ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_z ) end_ARG start_ARG italic_z end_ARG ) .

This skew “projects” the asymmetry of the market liquidity into the price space because of the market maker’s need to quote asymmetrically in order to account for that asymmetric liquidity (even in the absence of inventory).

The notion of Fair Transfer Price we propose (from now on FTP) is then defined as the mid-price of a market maker with infinite horizon and no inventory, i.e. it is defined at time t𝑡titalic_t by:

StFTP=St+12skew.subscriptsuperscript𝑆FTP𝑡subscript𝑆𝑡12subscriptskewS^{\text{FTP}}_{t}=S_{t}+\frac{1}{2}\text{skew}_{\infty}.italic_S start_POSTSUPERSCRIPT FTP end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG skew start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT .

It corresponds to the average between the price answered to a buyer and the price answered to a seller by a theoretical market maker with no inventory, if they were requested – hence the dimension of fairness.

Of course, in practice, one never knows the current state of liquidity and rather uses a probability distributionπ𝜋\piitalic_π over the states. One gets at time t𝑡titalic_t an FTP with mean

S¯tFTP=St+121jbmb,1jamaπjb,jaskewjb,jasubscriptsuperscript¯𝑆FTP𝑡subscript𝑆𝑡12subscriptformulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎superscript𝜋subscript𝑗𝑏subscript𝑗𝑎subscriptsuperscriptskewsubscript𝑗𝑏subscript𝑗𝑎\displaystyle\bar{S}^{\text{FTP}}_{t}=S_{t}+\frac{1}{2}\sum_{1\leq j_{b}\leq m%_{b},1\leq j_{a}\leq m_{a}}\pi^{j_{b},j_{a}}\text{skew}^{j_{b},j_{a}}_{\infty}over¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT FTP end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT skew start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT(5)

and standard deviation given by

121jbmb,1jamaπjb,ja(skewjb,ja)2(1jbmb,1jamaπjb,jaskewjb,ja)2.12subscriptformulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎superscript𝜋subscript𝑗𝑏subscript𝑗𝑎superscriptsubscriptsuperscriptskewsubscript𝑗𝑏subscript𝑗𝑎2superscriptsubscriptformulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎superscript𝜋subscript𝑗𝑏subscript𝑗𝑎subscriptsuperscriptskewsubscript𝑗𝑏subscript𝑗𝑎2\frac{1}{2}\sqrt{\sum_{1\leq j_{b}\leq m_{b},1\leq j_{a}\leq m_{a}}\pi^{j_{b},%j_{a}}\left(\text{skew}^{j_{b},j_{a}}_{\infty}\right)^{2}-\left(\sum_{1\leq j_%{b}\leq m_{b},1\leq j_{a}\leq m_{a}}\pi^{j_{b},j_{a}}\text{skew}^{j_{b},j_{a}}%_{\infty}\right)^{2}}.divide start_ARG 1 end_ARG start_ARG 2 end_ARG square-root start_ARG ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( skew start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT skew start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .

3.2.2 Main remarks on FTP

It is a priori hard to relate our concept of FTP to those used in the case of LOBs. However, since top-of-book volumes in LOBs are inversely related to the appetite of liquidity takers (the clients in a dealer market), FTP shares many characteristics with the weighted mid-prices of LOBs. Bid/ask imbalances in LOBs are indeed comparable to bid/ask asymmetries in client flows, though in the opposite direction. A very high volume at the bid (relative to the ask) in an LOB is similar to a situation in a dealer market where clients are more willing to buy than to sell. In this context, a market maker should skew their quotes towards the right, pushing the FTP upwards. This is in line with a weighted mid-price above the mid-price in an LOB.

At first sight, the notion of FTP depends strongly on the reference price chosen to build the market making model. This dependence is real but it is not the serious caveat it might seem. If indeed we replace (St)tsubscriptsubscript𝑆𝑡𝑡(S_{t})_{t}( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT by (St+ξ)tsubscriptsubscript𝑆𝑡𝜉𝑡(S_{t}+\xi)_{t}( italic_S start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_ξ ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, then the functions fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT should be shifted accordingly in the estimation procedure if we assume that trading decisions depend on the absolute values (as opposed to relative) of proposed prices. Subsequently, value functions should be translated by a term ξq𝜉𝑞\xi qitalic_ξ italic_q, and it is easy to see that the FTP would be unchanged since the functions δ¯bsuperscript¯𝛿𝑏\bar{\delta}^{b}over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and δ¯asuperscript¯𝛿𝑎\bar{\delta}^{a}over¯ start_ARG italic_δ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are themselves translated by ±ξplus-or-minus𝜉\pm\xi± italic_ξ. Of course, this invariance is limited to constant shifts, but it shows that differences between (relevant) reference prices should be partially or entirely compensated by their impact on the definition/estimation of fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT.

In the definition of FTP, the transaction size z𝑧zitalic_z inputted in the market making model plays a role, although it might seem arbitrary. This transaction size z𝑧zitalic_z could be the reference size for which market makers stream prices on electronic platforms. One can naturally generalize the concept to consider any size.

Another important point is that the FTP depends on the risk aversion parameter γ𝛾\gammaitalic_γ inputted into the objective function. This might seem problematic since the parameter γ𝛾\gammaitalic_γ can be chosen arbitrarily. However, the choice of γ𝛾\gammaitalic_γ leaves one degree of freedom, which is rather an opportunity. In Section4, we use γ𝛾\gammaitalic_γ to calibrate the model to observed bid-ask spreads.

Many improvements can be made to the market making model in line with what exists in the literature, such as considering several transaction sizes (see [7]), taking account of client tiering (see [3]), using the possibility to externalize part of the flow (see [3, 4]), replacing the quadratic running penalty – linked to the objective function proposed in [11] – with a more complicated one, etc.181818The introduction of asymmetric inventory costs, linked to repo rates for instance, is however not recommended if the goal is to define a fair price between two parties. One can also decide to use a multi-asset market making model instead of a single-asset one (see, for instance, [5], [6], and [23]). In fact, the notion of FTP is versatile, and one can choose the market making model they prefer. It must be noted that the role of the market making model here is not to provide quotes that will be used inside a trading algorithm, but rather to project information regarding liquidity levels, liquidity imbalances, and volatility into the price space. In particular, there is no real problem in keeping the market making model relatively simple (as long as liquidity dynamics are taken into account), especially since one can rely on the degree of freedom provided by the risk aversion parameter γ𝛾\gammaitalic_γ to match a desired target (see Section4 below).

4 From theory to practice

4.1 Introduction

In the above sections, we have extended the notion of micro-price and defined the new concept of Fair Transfer Price (FTP). To use these notions in practice, we need to estimate several parameters.

First, we need to estimate the parameters of the bidimensional MMPP. In Section2, we detailed an estimation procedure based on an EM algorithm (extensions are presented in AppendixA). Then, to compute the micro-price and/or estimate the dynamics of the reference price in the market making model, we need to estimate the constant κ𝜅\kappaitalic_κ. This is typically done with a linear regression of price moves on terms of the form 1jbm,1jamπjb,jav(λjb,λja)subscriptformulae-sequence1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚superscript𝜋subscript𝑗𝑏subscript𝑗𝑎𝑣superscript𝜆subscript𝑗𝑏superscript𝜆subscript𝑗𝑎\sum_{1\leq j_{b}\leq m,1\leq j_{a}\leq m}\pi^{j_{b},j_{a}}v(\lambda^{j_{b}},%\lambda^{j_{a}})∑ start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_v ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ), following Eq.(4). When it comes to using FTP, the volatility parameter σ𝜎\sigmaitalic_σ is also necessary, and classical estimators can be used for that purpose. One also needs to estimate the parameters used in modeling the conversion of an RFQ into a trade, i.e., the parameters of fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT once a parametric functional form has been chosen. fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are typically chosen to be logistic, and the estimation procedure boils down to logistic regressions. In addition to the estimation of parameters, the use of FTP requires choosing a risk aversion parameter and solving an HJB equation to get optimal quotes.

In what follows, we illustrate our approach and the different concepts of price on corporate bond data. For that purpose, we use an anonymized dataset of RFQs on high-yield corporate bonds kindly provided by J.P.Morgan. It contains, for each RFQ, the date and time of the request, the bond requested, the direction of the request (buy or sell), the notional (odd lots have been removed from the dataset), the price answered to the client, the current market (in fact composite) prices at the bid and at the ask, and the status – i.e., whether the price was accepted by the client or not. Because some requests are only sent by clients to gather information, we focused on RFQs that led to a trade with J.P.Morgan or with another dealer (this piece of information, but of course not the identity of the other dealer, is known as we focus on RFQs sent through multi-dealer-to-client platforms). Our dataset contains bonds from four different sectors.191919For confidentiality reasons, we do not document the list of bonds and sectors. It covers more than half a year of trading, over the post-COVID period.202020For confidentiality reasons, we do not document the exact period of time. Throughout the paper, the unit for times is in days since the beginning of the period, excluding weekends. Nights have also been excluded so that the beginning of the next trading day follows the end of the current one – trading hours have been set from 7am to 5pm.

4.2 Estimation of the parameters of the bidimensional Markov-modulated Poisson process

For the estimation of the parameters of the bidimensional Markov-modulated Poisson process, we consider the multi-asset extension presented in Appendix A.2 to carry out the process at the sector level. To illustrate our notion of micro-price, we also rely on the exchangeability assumption detailed in Appendix A.1.

In the EM algorithm corresponding to the extension presented in Appendix A.1, one must choose the number m𝑚mitalic_m of intensities, set their initial values, and those of the coefficients of the transition matrix. To obtain a first naive estimation of the intensities of the bidimensional Markov-modulated Poisson process for each sector, we started by computing the number of RFQs per day at the bid and at the ask. The results are plotted in Figures1, 2, 3, and 4. We clearly see that liquidity is volatile and that upward or downward bumps may be simultaneous across bid and ask (see, for instance, what happens around t=60𝑡60t=60italic_t = 60 and t=90𝑡90t=90italic_t = 90 in Figure1), but also asymmetric with one side seeing a rise or a decrease in liquidity while the other does not (see, for instance, what happens around t=75𝑡75t=75italic_t = 75 in Figure2).

For each sector, we decided to consider two intensities (m=2𝑚2m=2italic_m = 2), and initialized them using the average over the bid and ask sides of the 10th percentile (for the low liquidity state) and the 90th percentile (for the high liquidity state) of the distribution of the number of RFQs per day. To initialize the matrix Q𝑄Qitalic_Q, we used very naive values corresponding to independence between the intensities at the bid and the ask and transition rates from low to high and high to low equal to 1111 (per day).

We ran the EM algorithm over our database of RFQs, sector by sector (using the technique described in Appendix A.2 on the multi-asset extension). To normalize likelihoods, we used classical regression techniques. We noticed convergence of the values of λ1superscript𝜆1\lambda^{1}italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and λ2superscript𝜆2\lambda^{2}italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and the coefficients of the matrix Q𝑄Qitalic_Q after approximately 50 steps. The resulting parameters of the bidimensional MMPP are reported in Table 1. We clearly see that, for the four sectors, the algorithm manages to separate low liquidity from high liquidity. We also see that the transition matrices are different across sectors: high transition rates and a relatively high probability of jumping from an imbalanced state to the opposite imbalanced state in the case of Sector 1, a very stable (resp. unstable) low/low-liquidity (resp. high/high-liquidity) state in the case of Sector 2, and low transition rates for Sector4.

Once the parameters of the bidimensional MMPP have been estimated, we can evaluate at each point in time the probability of being in each state (see Section 2.2.3). In Figures5, 6, 7, and 8, we document the distribution of the values taken by the probability π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT (resp. π2,1superscript𝜋21\pi^{2,1}italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT) of being in a low/high-liquidity (resp. high/low-liquidity) state. We clearly see that high values of these probabilities are quite rare: it is hard to be certain that a disequilibrium in RFQs indeed corresponds to an underlying asymmetric regime.

Liquidity Dynamics in RFQ Markets and Impact on Pricing (1)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (2)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (3)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (4)
Sectorλ1superscript𝜆1\lambda^{1}italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPTλ2superscript𝜆2\lambda^{2}italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTQ𝑄Qitalic_Q
Sector 110.8373.03(14.014.374.375.2719.3260.9112.5429.0519.3212.5460.9129.0523.6715.0015.0053.67)matrix14.014.374.375.2719.3260.9112.5429.0519.3212.5460.9129.0523.6715.0015.0053.67\begin{pmatrix}-14.01&4.37&4.37&5.27\\19.32&-60.91&12.54&29.05\\19.32&12.54&-60.91&29.05\\23.67&15.00&15.00&-53.67\end{pmatrix}( start_ARG start_ROW start_CELL - 14.01 end_CELL start_CELL 4.37 end_CELL start_CELL 4.37 end_CELL start_CELL 5.27 end_CELL end_ROW start_ROW start_CELL 19.32 end_CELL start_CELL - 60.91 end_CELL start_CELL 12.54 end_CELL start_CELL 29.05 end_CELL end_ROW start_ROW start_CELL 19.32 end_CELL start_CELL 12.54 end_CELL start_CELL - 60.91 end_CELL start_CELL 29.05 end_CELL end_ROW start_ROW start_CELL 23.67 end_CELL start_CELL 15.00 end_CELL start_CELL 15.00 end_CELL start_CELL - 53.67 end_CELL end_ROW end_ARG )
Sector 28.4458.28(4.551.001.002.5518.5328.310.139.6518.530.1328.319.6514.7716.7316.7348.23)matrix4.551.001.002.5518.5328.310.139.6518.530.1328.319.6514.7716.7316.7348.23\begin{pmatrix}-4.55&1.00&1.00&2.55\\18.53&-28.31&0.13&9.65\\18.53&0.13&-28.31&9.65\\14.77&16.73&16.73&-48.23\end{pmatrix}( start_ARG start_ROW start_CELL - 4.55 end_CELL start_CELL 1.00 end_CELL start_CELL 1.00 end_CELL start_CELL 2.55 end_CELL end_ROW start_ROW start_CELL 18.53 end_CELL start_CELL - 28.31 end_CELL start_CELL 0.13 end_CELL start_CELL 9.65 end_CELL end_ROW start_ROW start_CELL 18.53 end_CELL start_CELL 0.13 end_CELL start_CELL - 28.31 end_CELL start_CELL 9.65 end_CELL end_ROW start_ROW start_CELL 14.77 end_CELL start_CELL 16.73 end_CELL start_CELL 16.73 end_CELL start_CELL - 48.23 end_CELL end_ROW end_ARG )
Sector 315.7381.78(9.982.792.794.4020.5323.730.023.1820.530.0223.733.189.874.174.1718.21)matrix9.982.792.794.4020.5323.730.023.1820.530.0223.733.189.874.174.1718.21\begin{pmatrix}-9.98&2.79&2.79&4.40\\20.53&-23.73&0.02&3.18\\20.53&0.02&-23.73&3.18\\9.87&4.17&4.17&-18.21\end{pmatrix}( start_ARG start_ROW start_CELL - 9.98 end_CELL start_CELL 2.79 end_CELL start_CELL 2.79 end_CELL start_CELL 4.40 end_CELL end_ROW start_ROW start_CELL 20.53 end_CELL start_CELL - 23.73 end_CELL start_CELL 0.02 end_CELL start_CELL 3.18 end_CELL end_ROW start_ROW start_CELL 20.53 end_CELL start_CELL 0.02 end_CELL start_CELL - 23.73 end_CELL start_CELL 3.18 end_CELL end_ROW start_ROW start_CELL 9.87 end_CELL start_CELL 4.17 end_CELL start_CELL 4.17 end_CELL start_CELL - 18.21 end_CELL end_ROW end_ARG )
Sector 47.3328.32(1.670.480.480.711.922.020.000.101.920.002.020.100.840.110.111.06)matrix1.670.480.480.711.922.020.000.101.920.002.020.100.840.110.111.06\begin{pmatrix}-1.67&0.48&0.48&0.71\\1.92&-2.02&0.00&0.10\\1.92&0.00&-2.02&0.10\\0.84&0.11&0.11&-1.06\end{pmatrix}( start_ARG start_ROW start_CELL - 1.67 end_CELL start_CELL 0.48 end_CELL start_CELL 0.48 end_CELL start_CELL 0.71 end_CELL end_ROW start_ROW start_CELL 1.92 end_CELL start_CELL - 2.02 end_CELL start_CELL 0.00 end_CELL start_CELL 0.10 end_CELL end_ROW start_ROW start_CELL 1.92 end_CELL start_CELL 0.00 end_CELL start_CELL - 2.02 end_CELL start_CELL 0.10 end_CELL end_ROW start_ROW start_CELL 0.84 end_CELL start_CELL 0.11 end_CELL start_CELL 0.11 end_CELL start_CELL - 1.06 end_CELL end_ROW end_ARG )
Liquidity Dynamics in RFQ Markets and Impact on Pricing (5)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (6)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (7)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (8)

4.3 Micro-price

4.3.1 Estimation of κ𝜅\kappaitalic_κ

In order to illustrate our concept of micro-price, we need first to estimate the parameter κ𝜅\kappaitalic_κ in the dynamics of bond prices. For each sector, we consider four bonds amongst those available in the database. We first compute the functions v𝑣vitalic_v given by Eq. (3) and then use Eq. (4) to perform a linear regression and estimateκ𝜅\kappaitalic_κ for each bond. We also compute the arithmetic volatility σ𝜎\sigmaitalic_σ and the weight β𝛽\betaitalic_β associated with each bond (see AppendixA.2). The results are reported in Table2.

SectorBondβ𝛽\betaitalic_βκ𝜅\kappaitalic_κ (stdev)σ𝜎\sigmaitalic_σ
110.102.29 (0.55)18.39
20.100.25 (0.49)15.43
30.062.83 (1.66)22.55
40.050.33 (2.23)19.75
210.190.57 (0.19)13.75
20.140.90 (0.22)16.05
30.110.65 (0.16)9.80
40.100.86 (0.68)20.36
310.110.61 (0.34)9.93
20.090.05 (0.16)18.41
30.060.11 (0.08)12.23
40.050.08 (0.11)18.68
410.210.04 (0.02)13.00
20.120.01 (0.01)24.09
30.120.08 (0.04)16.91
40.070.09 (0.05)12.67

The estimated values for κ𝜅\kappaitalic_κ are not all significantly different for 00 (given the standard deviations reported), but it is nevertheless interesting to notice that the figures are positive for all bonds. This tends to prove that imbalance in the flow of RFQs has a consistant predictive power on the variation of the price, hence the interest of the concept of micro-price.

4.3.2 Micro-price in practice

In Table 3, we took the last composite mid-price and bid-ask spread in the dataset for each of the 16 bonds we focus on, and computed the corresponding micro-price when we are 100%percent100100\%100 % sure that the market is imbalanced, one way or the other.

Of course, and as confirmed by the above histograms, one can seldom be certain to be in any of the two imbalanced states. In practice, micro-prices must therefore be computed as expectations over the different possible states, i.e., as functions of the current estimates of the probabilities of being in each state. In particular, the micro-prices exhibited in Table 3 correspond to theoretical bounds for the micro-prices that would be used in practice.

SectorBondMid-priceBid priceAsk priceMicro-price π2,1=1superscript𝜋211\pi^{2,1}\!\!\!=\!\!1italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 1Micro-price π1,2=1superscript𝜋121\pi^{1,2\!}\!\!=\!\!1italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT = 1
11103.593103.098104.088101.652105.534
297.10796.61497.60096.89297.322
399.14698.63199.66196.752101.541
494.18793.04995.32593.90994.465
2199.82399.291100.35598.819100.827
299.27098.60399.93697.700100.840
399.64998.815100.48398.513100.784
498.90397.570100.23597.97099.835
3195.33894.67496.00193.63497.041
292.39491.86092.92792.25292.535
397.13796.48497.79096.81997.455
494.83994.22095.45894.81094.867
41102.632102.151103.112102.252103.011
2104.785104.327105.242104.717104.853
3104.824104.293105.355103.994105.654
4108.438107.991108.884107.500109.375

In what follows, we study how the micro-price evolves depending on the probabilities of the different states of the bidimensional MMPP, for the first bond of each sector. Notice that, in our case, the respective values of π1,1superscript𝜋11\pi^{1,1}italic_π start_POSTSUPERSCRIPT 1 , 1 end_POSTSUPERSCRIPT and π2,2superscript𝜋22\pi^{2,2}italic_π start_POSTSUPERSCRIPT 2 , 2 end_POSTSUPERSCRIPT have no impact on the micro-price: only π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT and π2,1superscript𝜋21\pi^{2,1}italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT matter.

In Figure 9, we plot the micro-price as a function of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT when π2,1=0superscript𝜋210\pi^{2,1}=0italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 0. Figure 10 documents similarly the micro-price as a function of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT when π2,1=0.3superscript𝜋210.3\pi^{2,1}=0.3italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 0.3. To study the impact of the uncertainty on the parameterκ𝜅\kappaitalic_κ, we also plot the micro-prices corresponding to values of κ𝜅\kappaitalic_κ one standard deviation above and below our estimation. Composite bid-ask spreads are also reported.

Naturally, when π1,2=π2,1superscript𝜋12superscript𝜋21\pi^{1,2}=\pi^{2,1}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT = italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT, the micro-price is equal to the mid-price. As expected, we also see that a rise in π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT leads to an increase in micro-prices. In Figure 9, we see that micro-prices are within the composite bid-ask spread for moderate values of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT but beyond for large values (except for Bond 4.1). Values beyond the bid-ask spread could be seen as a real trading signal, but it is important to keep in mind that the results obtained for high values of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT must be interpreted with caution because the linear regressions have been carried out with only a few high values for π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT (see the above histograms). We see in Figure 10 that when π2,1=0.3superscript𝜋210.3\pi^{2,1}=0.3italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 0.3, most values remain inside the bid-ask spread. In fact, we see in Figures 11, 12, 13, and 14 that micro-prices are significantly outside the bid-ask spread for extreme values of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT and π2,1superscript𝜋21\pi^{2,1}italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT only, i.e., when one is really sure that the flow is imbalanced.

Liquidity Dynamics in RFQ Markets and Impact on Pricing (9)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (10)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (11)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (12)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (13)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (14)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (15)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (16)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (17)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (18)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (19)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (20)

4.4 Fair Transfer Price

Let us now come to the case of Fair Transfer Prices. For that purpose, we need to fit S-curves, choose a risk aversion parameter and solve an HJB equation.

4.4.1 Estimation of S-curves

For the functions fbsuperscript𝑓𝑏f^{b}italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and fasuperscript𝑓𝑎f^{a}italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT defined in Section 3.2.1, we assumed a logistic form. We noticed no systematic difference between the bid and ask sides. Consequently, we considered

fb(δ)=fa(δ)=11+eαlogit+βlogitδδ0=:f(δ),f^{b}(\delta)=f^{a}(\delta)=\frac{1}{1+e^{\alpha_{\text{logit}}+\beta_{\text{%logit}}\frac{\delta}{\delta^{0}}}}=:f(\delta),italic_f start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( italic_δ ) = italic_f start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_δ ) = divide start_ARG 1 end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT divide start_ARG italic_δ end_ARG start_ARG italic_δ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT end_ARG end_POSTSUPERSCRIPT end_ARG = : italic_f ( italic_δ ) ,

where δ0superscript𝛿0\delta^{0}italic_δ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT is the current composite bid-ask spread of the bond, and the parameters αlogitsubscript𝛼logit\alpha_{\text{logit}}italic_α start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT and βlogitsubscript𝛽logit\beta_{\text{logit}}italic_β start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT are estimated with a logistic regression.

Liquidity Dynamics in RFQ Markets and Impact on Pricing (21)

With this parametrization, the functions appeared to be almost uniform accross sectors (as shown in Figure 15), and we therefore estimated, for the sake of simplicity, a single S-curve using the entire dataset, independently of the sector. We obtained the following (rounded) values: αlogit=0.7subscript𝛼logit0.7\alpha_{\text{logit}}=-0.7italic_α start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT = - 0.7 and βlogit=3.1subscript𝛽logit3.1\beta_{\text{logit}}=3.1italic_β start_POSTSUBSCRIPT logit end_POSTSUBSCRIPT = 3.1.

4.4.2 Solving HJB equations

Our concept of FTP relies on the bid and ask quotes of a theoretical market maker who knows the current state of the market. To solve the stochastic optimal control problem of that market maker and obtain the associated quotes, one needs to compute the value functions numerically.

Let us recall that, in the model of Section 3, the value functions (θjb,ja)1jbmb,1jamasubscriptsuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎formulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎(\theta^{j_{b},j_{a}})_{1\leq j_{b}\leq m_{b},1\leq j_{a}\leq m_{a}}( italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT of the market maker satisfy the following system of Hamilton-Jacobi-Bellman (HJB) equations:212121We state the equations in the general case, i.e. not in the case of the extension of Appendix A.1, although our illustrations rely on the exchangeability assumption.

tθjb,ja(t,q)+κ(λja,aλjb,b)q12γσ2q2+1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaθkb,ka(t,q)subscript𝑡superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝜅superscript𝜆subscript𝑗𝑎𝑎superscript𝜆subscript𝑗𝑏𝑏𝑞12𝛾superscript𝜎2superscript𝑞2subscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscript𝜃subscript𝑘𝑏subscript𝑘𝑎𝑡𝑞\partial_{t}\theta^{j_{b},j_{a}}(t,q)+\kappa(\lambda^{j_{a},a}-\lambda^{j_{b},%b})q-\frac{1}{2}\gamma\sigma^{2}q^{2}+\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}%\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}\theta^{k_{b},k_{a}}(t%,q)∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) italic_q - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q )
+zλjb,bHb(θjb,ja(t,q)θjb,ja(t,q+z)z)+zλja,aHa(θjb,ja(t,q)θjb,ja(t,qz)z)=0𝑧superscript𝜆subscript𝑗𝑏𝑏superscript𝐻𝑏superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧𝑧superscript𝜆subscript𝑗𝑎𝑎superscript𝐻𝑎superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧0+z\lambda^{j_{b},b}H^{b}\left(\frac{\theta^{j_{b},j_{a}}(t,q)-\theta^{j_{b},j_%{a}}(t,q+z)}{z}\right)+z\lambda^{j_{a},a}H^{a}\left(\frac{\theta^{j_{b},j_{a}}%(t,q)-\theta^{j_{b},j_{a}}(t,q-z)}{z}\right)=0+ italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q + italic_z ) end_ARG start_ARG italic_z end_ARG ) + italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q - italic_z ) end_ARG start_ARG italic_z end_ARG ) = 0

with terminal condition θjb,ja(T,q)=0superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑇𝑞0\theta^{j_{b},j_{a}}(T,q)=0italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T , italic_q ) = 0.

We need to compute or approximate numerically the solution of this system of equations in order to compute FTPs. A natural approach is to use a Euler scheme, preferably implicit. In that case, relevant boundary conditions can be chosen by adding risk limits to the inventory of the theoretical market maker, and the equations become

tθjb,ja(t,q)+κ(λja,aλjb,b)q12γσ2q2+1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaθkb,ka(t,q)subscript𝑡superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝜅superscript𝜆subscript𝑗𝑎𝑎superscript𝜆subscript𝑗𝑏𝑏𝑞12𝛾superscript𝜎2superscript𝑞2subscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscript𝜃subscript𝑘𝑏subscript𝑘𝑎𝑡𝑞\partial_{t}\theta^{j_{b},j_{a}}(t,q)+\kappa(\lambda^{j_{a},a}-\lambda^{j_{b},%b})q-\frac{1}{2}\gamma\sigma^{2}q^{2}+\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}%\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}\theta^{k_{b},k_{a}}(t%,q)∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) italic_q - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q )
+zλjb,b𝟙{q+zq¯}Hb(θjb,ja(t,q)θjb,ja(t,q+z)z)+zλja,a𝟙{qzq¯}Ha(θjb,ja(t,q)θjb,ja(t,qz)z)=0𝑧superscript𝜆subscript𝑗𝑏𝑏subscript1𝑞𝑧¯𝑞superscript𝐻𝑏superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧𝑧superscript𝜆subscript𝑗𝑎𝑎subscript1𝑞𝑧¯𝑞superscript𝐻𝑎superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧𝑧0+z\lambda^{j_{b},b}\mathds{1}_{\{q+z\leq\bar{q}\}}H^{b}\left(\frac{\theta^{j_{%b},j_{a}}(t,q)-\theta^{j_{b},j_{a}}(t,q+z)}{z}\right)+z\lambda^{j_{a},a}%\mathds{1}_{\{q-z\geq-\bar{q}\}}H^{a}\left(\frac{\theta^{j_{b},j_{a}}(t,q)-%\theta^{j_{b},j_{a}}(t,q-z)}{z}\right)=0+ italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT blackboard_1 start_POSTSUBSCRIPT { italic_q + italic_z ≤ over¯ start_ARG italic_q end_ARG } end_POSTSUBSCRIPT italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q + italic_z ) end_ARG start_ARG italic_z end_ARG ) + italic_z italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT blackboard_1 start_POSTSUBSCRIPT { italic_q - italic_z ≥ - over¯ start_ARG italic_q end_ARG } end_POSTSUBSCRIPT italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q - italic_z ) end_ARG start_ARG italic_z end_ARG ) = 0

with terminal condition θjb,ja(T,q)=0superscript𝜃subscript𝑗𝑏subscript𝑗𝑎𝑇𝑞0\theta^{j_{b},j_{a}}(T,q)=0italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T , italic_q ) = 0, where q¯>0¯𝑞0\bar{q}>0over¯ start_ARG italic_q end_ARG > 0 corresponds to the risk limit, i.e. the market maker refuses any trade that would bring the inventory out of the interval [q¯,q¯]¯𝑞¯𝑞[-\bar{q},\bar{q}][ - over¯ start_ARG italic_q end_ARG , over¯ start_ARG italic_q end_ARG ]. If q¯¯𝑞\bar{q}over¯ start_ARG italic_q end_ARG is large enough, this has almost no impact on the bid and ask quotes of the market maker at q=0𝑞0q=0italic_q = 0 that are used to compute FTPs.

Euler schemes can be time-consuming when the number of states mb×masubscript𝑚𝑏subscript𝑚𝑎m_{b}\times m_{a}italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT × italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is large, or even unfeasible if the one-asset market-making model is replaced by a multi-asset one. Using the same approach as in [6], we propose in the following paragraphs a quadratic approximation of the value functions.

Let us replace the Hamiltonian functions Hbsuperscript𝐻𝑏H^{b}italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Hasuperscript𝐻𝑎H^{a}italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT by the quadratic functions

Hˇb:pα0b+α1bp+12α2bp2andHˇa:pα0a+α1ap+12α2ap2.:superscriptˇ𝐻𝑏maps-to𝑝subscriptsuperscript𝛼𝑏0subscriptsuperscript𝛼𝑏1𝑝12subscriptsuperscript𝛼𝑏2superscript𝑝2andsuperscriptˇ𝐻𝑎:maps-to𝑝subscriptsuperscript𝛼𝑎0subscriptsuperscript𝛼𝑎1𝑝12subscriptsuperscript𝛼𝑎2superscript𝑝2\check{H}^{b}:p\mapsto\alpha^{b}_{0}+\alpha^{b}_{1}p+\frac{1}{2}\alpha^{b}_{2}%p^{2}\quad\textrm{and}\quad\check{H}^{a}:p\mapsto\alpha^{a}_{0}+\alpha^{a}_{1}%p+\frac{1}{2}\alpha^{a}_{2}p^{2}.overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT : italic_p ↦ italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT : italic_p ↦ italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

A natural choice for the functions Hˇbsuperscriptˇ𝐻𝑏\check{H}^{b}overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Hˇasuperscriptˇ𝐻𝑎\check{H}^{a}overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT derives from Taylor expansions around p=0𝑝0p=0italic_p = 0. In that case, we have

i{0,1,2},αib=Hb(i)(0)andαia=Ha(i)(0).formulae-sequencefor-all𝑖012formulae-sequencesubscriptsuperscript𝛼𝑏𝑖superscriptsuperscript𝐻𝑏𝑖0andsubscriptsuperscript𝛼𝑎𝑖superscriptsuperscript𝐻𝑎𝑖0\forall i\in\{0,1,2\},\quad\alpha^{b}_{i}={H^{b}}^{(i)}(0)\quad\textrm{and}%\quad\alpha^{a}_{i}={H^{a}}^{(i)}(0).∀ italic_i ∈ { 0 , 1 , 2 } , italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ( 0 ) and italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ( 0 ) .

For (jb,ja){1,,mb}×{1,,ma}subscript𝑗𝑏subscript𝑗𝑎1subscript𝑚𝑏1subscript𝑚𝑎(j_{b},j_{a})\in\{1,\ldots,m_{b}\}\times\{1,\ldots,m_{a}\}( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ∈ { 1 , … , italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT } × { 1 , … , italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT }, we denote by θˇjb,jasuperscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎\check{\theta}^{j_{b},j_{a}}overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT the approximation of θjb,jasuperscript𝜃subscript𝑗𝑏subscript𝑗𝑎\theta^{j_{b},j_{a}}italic_θ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT associated with the functions Hˇbsuperscriptˇ𝐻𝑏\check{H}^{b}overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and Hˇasuperscriptˇ𝐻𝑎\check{H}^{a}overroman_ˇ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT. The functions (θˇjb,ja)1jbmb,1jamasubscriptsuperscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎formulae-sequence1subscript𝑗𝑏subscript𝑚𝑏1subscript𝑗𝑎subscript𝑚𝑎(\check{\theta}^{j_{b},j_{a}})_{1\leq j_{b}\leq m_{b},1\leq j_{a}\leq m_{a}}( overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT verify

00\displaystyle 0=\displaystyle==tθˇjb,ja(t,q)+κ(λja,aλjb,b)q12γσ2q2subscript𝑡superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝜅superscript𝜆subscript𝑗𝑎𝑎superscript𝜆subscript𝑗𝑏𝑏𝑞12𝛾superscript𝜎2superscript𝑞2\displaystyle\partial_{t}\check{\theta}^{j_{b},j_{a}}(t,q)+\kappa(\lambda^{j_{%a},a}-\lambda^{j_{b},b})q-\frac{1}{2}\gamma\sigma^{2}q^{2}∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) italic_q - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
+1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaθˇkb,ka(t,q)+z(λjb,bα0b+λja,aα0a)subscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscriptˇ𝜃subscript𝑘𝑏subscript𝑘𝑎𝑡𝑞𝑧superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscript𝛼𝑏0superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscript𝛼𝑎0\displaystyle+\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}\leq m_{a}}Q_{(j_{b}-1)m_%{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}\check{\theta}^{k_{b},k_{a}}(t,q)+z\left(%\lambda^{j_{b},b}\alpha^{b}_{0}+\lambda^{j_{a},a}\alpha^{a}_{0}\right)+ ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) + italic_z ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
+(λjb,bα1b(θˇjb,ja(t,q)θˇjb,ja(t,q+z))+λja,aα1a(θˇjb,ja(t,q)θˇjb,ja(t,qz)))superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscript𝛼𝑏1superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscript𝛼𝑎1superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧\displaystyle+\left(\lambda^{j_{b},b}\alpha^{b}_{1}\left(\check{\theta}^{j_{b}%,j_{a}}(t,q)-\check{\theta}^{j_{b},j_{a}}(t,q+z)\right)+\lambda^{j_{a},a}%\alpha^{a}_{1}\left(\check{\theta}^{j_{b},j_{a}}(t,q)-\check{\theta}^{j_{b},j_%{a}}(t,q-z)\right)\right)+ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q + italic_z ) ) + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q - italic_z ) ) )
+12z(λjb,bα2b(θˇjb,ja(t,q)θˇjb,ja(t,q+z))2+λja,aα2a(θˇjb,ja(t,q)θˇjb,ja(t,qz))2),12𝑧superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscript𝛼𝑏2superscriptsuperscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧2superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscript𝛼𝑎2superscriptsuperscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞𝑧2\displaystyle+\frac{1}{2z}\left(\lambda^{j_{b},b}\alpha^{b}_{2}\left(\check{%\theta}^{j_{b},j_{a}}(t,q)-\check{\theta}^{j_{b},j_{a}}(t,q+z)\right)^{2}+%\lambda^{j_{a},a}\alpha^{a}_{2}\left(\check{\theta}^{j_{b},j_{a}}(t,q)-\check{%\theta}^{j_{b},j_{a}}(t,q-z)\right)^{2}\right),+ divide start_ARG 1 end_ARG start_ARG 2 italic_z end_ARG ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q + italic_z ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) - overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q - italic_z ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ,

and of course we consider the terminal condition θˇjb,ja(T,q)=0superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑇𝑞0\check{\theta}^{j_{b},j_{a}}(T,q)=0overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T , italic_q ) = 0.

To write the approximations of the value functions in a simple way, let us introduce for i{0,1,2}𝑖012i\in\{0,1,2\}italic_i ∈ { 0 , 1 , 2 } andk𝑘k\in\mathbb{N}italic_k ∈ blackboard_N

Δi,kb=αibzkandΔi,ka=αiazk.formulae-sequencesuperscriptsubscriptΔ𝑖𝑘𝑏subscriptsuperscript𝛼𝑏𝑖superscript𝑧𝑘andsuperscriptsubscriptΔ𝑖𝑘𝑎subscriptsuperscript𝛼𝑎𝑖superscript𝑧𝑘\Delta_{i,k}^{b}=\alpha^{b}_{i}z^{k}\quad\text{and}\quad\Delta_{i,k}^{a}=%\alpha^{a}_{i}z^{k}.\vspace{-0.1cm}roman_Δ start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = italic_α start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT and roman_Δ start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_α start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT .

For (jb,ja){1,,mb}×{1,,ma}subscript𝑗𝑏subscript𝑗𝑎1subscript𝑚𝑏1subscript𝑚𝑎(j_{b},j_{a})\in\{1,\ldots,m_{b}\}\times\{1,\ldots,m_{a}\}( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ∈ { 1 , … , italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT } × { 1 , … , italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT }, let us consider three differentiable functions Ajb,ja:[0,T]:subscript𝐴subscript𝑗𝑏subscript𝑗𝑎0𝑇A_{j_{b},j_{a}}:[0,T]\to\mathbb{R}italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT : [ 0 , italic_T ] → blackboard_R, Bjb,ja:[0,T]:subscript𝐵subscript𝑗𝑏subscript𝑗𝑎0𝑇B_{j_{b},j_{a}}:[0,T]\to\mathbb{R}italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT : [ 0 , italic_T ] → blackboard_R, and Cjb,ja:[0,T]:subscript𝐶subscript𝑗𝑏subscript𝑗𝑎0𝑇C_{j_{b},j_{a}}:[0,T]\to\mathbb{R}italic_C start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT : [ 0 , italic_T ] → blackboard_R solutions of the system ofordinary differential equations

{Ajb,ja(t)=2(λjb,bΔ2,1b+λja,aΔ2,1a)Ajb,ja(t)212γσ21kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaAkb,ka(t)Bjb,ja(t)=2(λjb,bΔ1,1bλja,aΔ1,1a)Ajb,ja(t)+2(λjb,bΔ2,2bλja,aΔ2,2a)Ajb,ja(t)2+κ(λja,aλjb,b)+2(λjb,bΔ2,1b+λja,aΔ2,1a)Ajb,ja(t)Bjb,ja(t)1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaBkb,ka(t)Cjb,ja(t)=(λjb,bΔ0,1b+λja,aΔ0,1a)+(λjb,bΔ1,2b+λja,aΔ1,2a)Ajb,ja(t)+(λjb,bΔ1,1bλja,aΔ1,1a)Bjb,ja(t)+12(λjb,bΔ2,3b+λja,aΔ2,3a)Ajb,ja(t)2+12(λjb,bΔ2,1b+λja,aΔ2,1a)Bjb,ja(t)2+(λjb,bΔ2,2bλja,aΔ2,2a)Ajb,ja(t)Bjb,ja(t)1kbmb,1kamaQ(jb1)ma+ja,(kb1)ma+kaCkb,ka(t),casessuperscriptsubscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡absent2superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏21superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎21subscript𝐴subscript𝑗𝑏subscript𝑗𝑎superscript𝑡212𝛾superscript𝜎2otherwisesubscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝐴subscript𝑘𝑏subscript𝑘𝑎𝑡superscriptsubscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑡absent2superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏11superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎11subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡2superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏22superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎22subscript𝐴subscript𝑗𝑏subscript𝑗𝑎superscript𝑡2otherwise𝜅superscript𝜆subscript𝑗𝑎𝑎superscript𝜆subscript𝑗𝑏𝑏2superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏21superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎21subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑡otherwisesubscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝐵subscript𝑘𝑏subscript𝑘𝑎𝑡superscriptsubscript𝐶subscript𝑗𝑏subscript𝑗𝑎𝑡absentsuperscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏01superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎01superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏12superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎12subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡otherwisesuperscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏11superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎11subscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑡12superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏23superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎23subscript𝐴subscript𝑗𝑏subscript𝑗𝑎superscript𝑡2otherwise12superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏21superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎21subscript𝐵subscript𝑗𝑏subscript𝑗𝑎superscript𝑡2superscript𝜆subscript𝑗𝑏𝑏subscriptsuperscriptΔ𝑏22superscript𝜆subscript𝑗𝑎𝑎subscriptsuperscriptΔ𝑎22subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑡otherwisesubscriptformulae-sequence1subscript𝑘𝑏subscript𝑚𝑏1subscript𝑘𝑎subscript𝑚𝑎subscript𝑄subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝐶subscript𝑘𝑏subscript𝑘𝑎𝑡\begin{cases}\displaystyle{A_{j_{b},j_{a}}^{\prime}}(t)=&2\left(\lambda^{j_{b}%,b}\Delta^{b}_{2,1}+\lambda^{j_{a},a}\Delta^{a}_{2,1}\right)A_{j_{b},j_{a}}(t)%^{2}-\frac{1}{2}\gamma\sigma^{2}\\&-\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k%_{b}-1)m_{a}+k_{a}}A_{k_{b},k_{a}}(t)\\{B_{j_{b},j_{a}}^{\prime}}(t)=&2\left(\lambda^{j_{b},b}\Delta^{b}_{1,1}-%\lambda^{j_{a},a}\Delta^{a}_{1,1}\right)A_{j_{b},j_{a}}(t)+2\left(\lambda^{j_{%b},b}\Delta^{b}_{2,2}-\lambda^{j_{a},a}\Delta^{a}_{2,2}\right)A_{j_{b},j_{a}}(%t)^{2}\\&+\kappa(\lambda^{j_{a},a}-\lambda^{j_{b},b})+2\left(\lambda^{j_{b},b}\Delta^{%b}_{2,1}+\lambda^{j_{a},a}\Delta^{a}_{2,1}\right)A_{j_{b},j_{a}}(t)B_{j_{b},j_%{a}}(t)\\&-\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k%_{b}-1)m_{a}+k_{a}}B_{k_{b},k_{a}}(t)\\{C_{j_{b},j_{a}}^{\prime}}(t)=&\left(\lambda^{j_{b},b}\Delta^{b}_{0,1}+\lambda%^{j_{a},a}\Delta^{a}_{0,1}\right)+\left(\lambda^{j_{b},b}\Delta^{b}_{1,2}+%\lambda^{j_{a},a}\Delta^{a}_{1,2}\right)A_{j_{b},j_{a}}(t)\\&+\left(\lambda^{j_{b},b}\Delta^{b}_{1,1}-\lambda^{j_{a},a}\Delta^{a}_{1,1}%\right)B_{j_{b},j_{a}}(t)+\frac{1}{2}\left(\lambda^{j_{b},b}\Delta^{b}_{2,3}+%\lambda^{j_{a},a}\Delta^{a}_{2,3}\right)A_{j_{b},j_{a}}(t)^{2}\\&+\frac{1}{2}\left(\lambda^{j_{b},b}\Delta^{b}_{2,1}+\lambda^{j_{a},a}\Delta^{%a}_{2,1}\right)B_{j_{b},j_{a}}(t)^{2}+\left(\lambda^{j_{b},b}\Delta^{b}_{2,2}-%\lambda^{j_{a},a}\Delta^{a}_{2,2}\right)A_{j_{b},j_{a}}(t)B_{j_{b},j_{a}}(t)\\&-\sum_{1\leq k_{b}\leq m_{b},1\leq k_{a}\leq m_{a}}Q_{(j_{b}-1)m_{a}+j_{a},(k%_{b}-1)m_{a}+k_{a}}C_{k_{b},k_{a}}(t),\end{cases}{ start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = end_CELL start_CELL 2 ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL - ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = end_CELL start_CELL 2 ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 1 end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 1 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) + 2 ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + italic_κ ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT ) + 2 ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL - ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL italic_C start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = end_CELL start_CELL ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 , 1 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 , 1 end_POSTSUBSCRIPT ) + ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 1 end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 , 1 end_POSTSUBSCRIPT ) italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT ) italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT - italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL - ∑ start_POSTSUBSCRIPT 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) , end_CELL end_ROW

with terminal conditions Ajb,ja(T)=0subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑇0A_{j_{b},j_{a}}(T)=0italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_T ) = 0, Bjb,ja(T)=0subscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑇0B_{j_{b},j_{a}}(T)=0italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_T ) = 0 and Cjb,ja(T)=0subscript𝐶subscript𝑗𝑏subscript𝑗𝑎𝑇0C_{j_{b},j_{a}}(T)=0italic_C start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_T ) = 0.

Then, for all (jb,ja){1,,mb}×{1,,ma}subscript𝑗𝑏subscript𝑗𝑎1subscript𝑚𝑏1subscript𝑚𝑎(j_{b},j_{a})\in\{1,\ldots,m_{b}\}\times\{1,\ldots,m_{a}\}( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ∈ { 1 , … , italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT } × { 1 , … , italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT }, we have:

θˇjb,ja(t,q)=q2Ajb,ja(t)qBjb,ja(t)Cjb,ja(t).superscriptˇ𝜃subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞superscript𝑞2subscript𝐴subscript𝑗𝑏subscript𝑗𝑎𝑡𝑞subscript𝐵subscript𝑗𝑏subscript𝑗𝑎𝑡subscript𝐶subscript𝑗𝑏subscript𝑗𝑎𝑡\check{\theta}^{j_{b},j_{a}}(t,q)=-q^{2}A_{j_{b},j_{a}}(t)-qB_{j_{b},j_{a}}(t)%-C_{j_{b},j_{a}}(t).\vspace{-0.1cm}overroman_ˇ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t , italic_q ) = - italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) - italic_q italic_B start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) - italic_C start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) .

Moreover, asymptotic results on value functions continue to hold on their approximations.

This kind of approximations has been used in [3, 5] with great success in terms of risk management. We investigate the quality of the approximation in terms of FTPs below.

4.4.3 FTP in practice

To compute FTPs as proposed in Section3.2.1, we still have to choose the risk aversion of the theoretical market maker. A natural way to choose γ𝛾\gammaitalic_γ is to calibrate it to composite bid and ask prices, i.e. assuming that the quotes of the theoretical market maker correspond to the market composite bid and ask prices when inventory is equal to 00.

The optimal strategy of the theoretical market maker is obtained by solving numerically the HJB equation, using two different methods: (a) an implicit Euler scheme, and (b) the quadratic approximation technique. Depending on the numerical method we use, γ𝛾\gammaitalic_γ calibrated to composite bid and ask prices takes different values.222222The values of γ𝛾\gammaitalic_γ vary across bonds. This comes in part from our choice of a simple market making model to illustrate our concepts. However, in terms of FTP, the results obtained with the two numerical methods are almost identical, as shown in Table4 (FTP (a) corresponds to the Euler scheme and FTP (b) to the quadratic approximation).

As with micro-prices, one can never be certain in practice to be in any given state, and the FTP has to be computed as an expectation over the different possible states, depending on the current estimate. Therefore the FTPs exhibited in Table4 correspond to bounds for the FTPs that would be used in practice. Notice that the adjustments given by FTPs are of lower magnitude than those suggested by micro-prices. As with micro-prices, we study how FTPs evolve depending on the probabilities. Figure 16 documents FTPs as a function of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT, when π2,1=0superscript𝜋210\pi^{2,1}=0italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 0 while Figure 17 documents FTPs as a function of π1,2superscript𝜋12\pi^{1,2}italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT, when π2,1=0.3superscript𝜋210.3\pi^{2,1}=0.3italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 0.3. We see that adjustments are always small. This is linked to the fact that, even when the market is imbalanced, market makers can slightly skew their quotes to deter risk-increasing trades and transform requests into trades when trades would result in a less risky position (less inventory in absolute value in our case). This strongly relies on our implicit assumption that S-curves are the same independently of the liquidity regime. However, we found no empirical evidence of the influence of intensities on fill rates.

Bondγ𝛾\gammaitalic_γ (a)γ𝛾\gammaitalic_γ (b)Bid priceAsk priceπ2,1=1superscript𝜋211\pi^{\!2,1}\!\!=\!\!1\!\!\!italic_π start_POSTSUPERSCRIPT 2 , 1 end_POSTSUPERSCRIPT = 1 : FTP (a)FTP (b)π1,2=1superscript𝜋121\pi^{\!1,2}\!\!=\!\!1\!\!\!italic_π start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT = 1 : FTP (a)FTP (b)
1.14.51094.5superscript1094.5\cdot 10^{-9}4.5 ⋅ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT5.11095.1superscript1095.1\cdot 10^{-9}5.1 ⋅ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT103.098104.088103.458103.458103.728103.729
1.28.91098.9superscript1098.9\cdot 10^{-9}8.9 ⋅ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT9.11099.1superscript1099.1\cdot 10^{-9}9.1 ⋅ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT96.51497.60097.09297.09297.12297.122
1.34.41084.4superscript1084.4\cdot 10^{-8}4.4 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT5.21085.2superscript1085.2\cdot 10^{-8}5.2 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT98.63199.66199.03899.03799.25499.255
1.48.51078.5superscript1078.5\cdot 10^{-7}8.5 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT1.61061.6superscript1061.6\cdot 10^{-6}1.6 ⋅ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT93.04995.32594.16794.17294.20794.202
2.16.11086.1superscript1086.1\cdot 10^{-8}6.1 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT6.91086.9superscript1086.9\cdot 10^{-8}6.9 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT99.291100.35599.68299.68199.96499.965
2.27.01087.0superscript1087.0\cdot 10^{-8}7.0 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT8.31088.3superscript1088.3\cdot 10^{-8}8.3 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT98.60399.93699.10699.10499.43399.435
2.31.11071.1superscript1071.1\cdot 10^{-7}1.1 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT1.21071.2superscript1071.2\cdot 10^{-7}1.2 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT98.815100.48399.55499.55399.74399.744
2.41.31071.3superscript1071.3\cdot 10^{-7}1.3 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT1.61071.6superscript1071.6\cdot 10^{-7}1.6 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT97.570100.23598.82498.82498.98198.981
3.14.91074.9superscript1074.9\cdot 10^{-7}4.9 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT5.61075.6superscript1075.6\cdot 10^{-7}5.6 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT94.67496.00195.19595.19395.48095.482
3.26.11076.1superscript1076.1\cdot 10^{-7}6.1 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT7.61077.6superscript1077.6\cdot 10^{-7}7.6 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT91.86092.92792.36492.36592.42394.422
3.37.01077.0superscript1077.0\cdot 10^{-7}7.0 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT9.61079.6superscript1079.6\cdot 10^{-7}9.6 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT96.48497.79097.10497.10797.16997.166
3.44.31074.3superscript1074.3\cdot 10^{-7}4.3 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT7.71077.7superscript1077.7\cdot 10^{-7}7.7 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT94.22095.45894.81594.82494.86094.851
4.11.21071.2superscript1071.2\cdot 10^{-7}1.2 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT1.31071.3superscript1071.3\cdot 10^{-7}1.3 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT102.151103.112102.523102.525102.740102.738
4.21.31071.3superscript1071.3\cdot 10^{-7}1.3 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT1.71071.7superscript1071.7\cdot 10^{-7}1.7 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT104.327105.242104.691104.701104.878104.868
4.31.81071.8superscript1071.8\cdot 10^{-7}1.8 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT2.21072.2superscript1072.2\cdot 10^{-7}2.2 ⋅ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT104.293105.355104.697104.706104.951104.942
4.41.51081.5superscript1081.5\cdot 10^{-8}1.5 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT1.61081.6superscript1081.6\cdot 10^{-8}1.6 ⋅ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT107.991108.884108.377108.377108.498108.498
Liquidity Dynamics in RFQ Markets and Impact on Pricing (22)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (23)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (24)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (25)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (26)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (27)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (28)
Liquidity Dynamics in RFQ Markets and Impact on Pricing (29)

Conclusion

In this paper, we developed a new approach based on the use of a bidimensional Markov-modulated Poisson process to model liquidity in OTC markets relying of requests for quote. The statistical estimation procedure we proposed is based on an EM algorithm and can be used either at the asset level or at a more macroscopic level. Although asymmetric states are hard to identify with great confidence, we showed on corporate bond data that flow imbalances contain information about the evolution of the price. We used flow asymmetries to generalize the notion of micro-price proposed by Stoikov in the context of markets organized around limit order books. We also coined a new concept inspired by the recent OTC market making literature: Fair Transfer Price. It is related to the quotes proposed by a market maker who takes flow imbalances into account and, therefore, projects liquidity asymmetries onto the price space. We noticed that the price adjustments associated with FTP are often small, smaller than those associated with micro-prices.

Acknowledgment

This research has been conducted with the support of J.P.Morgan and under the aegis of the Institut Louis Bachelier. The ideas presented in this paper do not necessarily reflect the views or practices of J.P.Morgan. The authors would like to thank Morten Andersen (J.P.Morgan), Gabriele Butti (J.P.Morgan), and Nabil Nouaman (J.P.Morgan) for the numerous and insightful discussions they had with them on the subject. The paper was presented at several conferences and seminars, including the 17th Financial Risks International Forum, the London Mathematical Finance Seminar Series, the LPSM seminar “Mathématiques financières et actuarielles, probabilités numériques”, the Imperial Finance and Stochastics seminar, and the EWGCFM meeting at Khalifa University (Abu Dhabi). The audience at these talks should be warmly thanked.

Data availability statement

Due to confidentiality reasons, the data used in this article cannot be made publicly available.

References

  • [1]Marco Avellaneda and Sasha Stoikov.High-frequency trading in a limit order book.Quantitative Finance, 8(3):217–224, 2008.
  • [2]Bastien Baldacci, Philippe Bergault, Joffrey Derchu, and Mathieu Rosenbaum.On bid and ask side-specific tick sizes.SIAM Journal on Financial Mathematics, 14(4):1215–1248, 2023.
  • [3]Alexander Barzykin, Philippe Bergault, and Olivier Guéant.Market-making by a foreign exchange dealer.Risk Magazine, 2022.
  • [4]Alexander Barzykin, Philippe Bergault, and Olivier Guéant.Algorithmic market making in dealer markets with hedging and marketimpact.Mathematical Finance, 33(1):41–79, 2023.
  • [5]Alexander Barzykin, Philippe Bergault, and Olivier Guéant.Dealing with multi-currency inventory risk in foreign exchange cashmarkets.Risk Magazine, 2023.
  • [6]Philippe Bergault, David Evangelista, Olivier Guéant, and Douglas Vieira.Closed-form approximations in multi-asset market making.Applied Mathematical Finance, 28(2):101–142, 2021.
  • [7]Philippe Bergault and Olivier Guéant.Size matters for OTC market makers: general results anddimensionality reduction techniques.Mathematical Finance, 31(1):279–322, 2021.
  • [8]Julius Bonart and Fabrizio Lillo.A continuous and efficient fundamental price on the discrete orderbook grid.Physica A: Statistical Mechanics and its Applications,503:698–713, 2018.
  • [9]Álvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal.Enhancing trading strategies with order book signals.Applied Mathematical Finance, 25(1):1–35, 2018.
  • [10]Álvaro Cartea, Sebastian Jaimungal, and José Penalva.Algorithmic and High-Frequency Trading.Cambridge University Press, 2015.
  • [11]Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci.Buy low, sell high: A high frequency trading perspective.SIAM Journal on Financial Mathematics, 5(1):415–444, 2014.
  • [12]Rama Cont and Adrien DeLarrard.Price dynamics in a Markovian limit order market.SIAM Journal on Financial Mathematics, 4(1):1–25, 2013.
  • [13]Khalil Dayri and Mathieu Rosenbaum.Large tick assets: implicit spread and optimal tick size.Market Microstructure and Liquidity, 1(01):1550003, 2015.
  • [14]Sylvain Delattre, ChristianY. Robert, and Mathieu Rosenbaum.Estimating the efficient price from the order flow: a BrownianCox process approach.Stochastic Processes and their Applications, 123(7):2603–2619,2013.
  • [15]Jens Dick-Nielsen.Liquidity biases in TRACE.The Journal of Fixed Income, 19(2):43–55, 2009.
  • [16]Jens Dick-Nielsen.How to clean enhanced TRACE data.Available at SSRN 2337908, 2014.
  • [17]Wolfgang Fischer and Kathleen Meier-Hellstern.The markov-modulated poisson process (MMPP) cookbook.Performance evaluation, 18(2):149–171, 1993.
  • [18]LawrenceR. Glosten and PaulR. Milgrom.Bid, ask and transaction prices in a specialist market withheterogeneously informed traders.Journal of Financial Economics, 14(1):71–100, 1985.
  • [19]MartinD. Gould and Julius Bonart.Queue imbalance as a one-tick-ahead price predictor in a limit orderbook.Market Microstructure and Liquidity, 2(02):1650006, 2016.
  • [20]Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia.Dealing with the inventory risk: a solution to the market makingproblem.Mathematics and Financial Economics, 7(4):477–507, 2013.
  • [21]Olivier Guéant and Jiang Pu.Mid-price estimation for European corporate bonds: a particlefiltering approach.Market Microstructure and Liquidity, 4(01n02):1950005, 2018.
  • [22]Olivier Guéant.The Financial Mathematics of Market Liquidity: Fromoptimal execution to market making, volume33.CRC Press, 2016.
  • [23]Olivier Guéant.Optimal market making.Applied Mathematical Finance, 24(2):112–154, 2017.
  • [24]Olivier Guéant and Iuliia Manziuk.Optimal control on graphs: existence, uniqueness, and long-termbehavior.ESAIM: Control, Optimisation and Calculus of Variations, 26:22,2020.
  • [25]Thibault Jaisson.Liquidity and impact in fair markets.Market Microstructure and Liquidity, 1(02):1550010, 2015.
  • [26]Charles-Albert Lehalle and Othmane Mounjid.Limit order strategic placement with adverse selection risk and therole of latency.Market Microstructure and Liquidity, 3(01):1750009, 2017.
  • [27]Ananth Madhavan, Matthew Richardson, and Mark Roomans.Why do security prices change? A transaction-level analysis ofNYSE stocks.The Review of Financial Studies, 10(4):1035–1064, 1997.
  • [28]KathleenS Meier-Hellstern.A fitting algorithm for Markov-modulated Poisson processes havingtwo arrival rates.European Journal of Operational Research, 29(3):370–377, 1987.
  • [29]Roel Oomen.Last look.Quantitative Finance, 17(7):1057–1070, 2017.
  • [30]ChristianY. Robert and Mathieu Rosenbaum.A new approach for the dynamics of ultra-high-frequency data: Themodel with uncertainty zones.Journal of Financial Econometrics, 9(2):344–366, 2011.
  • [31]Tobias Rydén.An EM algorithm for estimation in Markov-modulated Poissonprocesses.Computational Statistics & Data Analysis, 21(4):431–447,1996.
  • [32]Sasha Stoikov.The micro-price: a high-frequency estimator of future prices.Quantitative Finance, 18(12):1959–1966, 2018.
  • [33]Sasha Stoikov, Peter Decrem, Yikai Hua, and Anne Shen.The Microstructure of Cointegrated Assets.Available at SSRN 3824298, 2021.

Appendix A Two important extensions

A.1 An exchangeability assumption to impose symmetry in the asymmetries

In the estimation procedure proposed in Section 2, we considered two sets {λ1,b,,λmb,b}superscript𝜆1𝑏superscript𝜆subscript𝑚𝑏𝑏\{\lambda^{1,b},\ldots,\lambda^{m_{b},b}\}{ italic_λ start_POSTSUPERSCRIPT 1 , italic_b end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT } and {λ1,a,,λma,a}superscript𝜆1𝑎superscript𝜆subscript𝑚𝑎𝑎\{\lambda^{1,a},\ldots,\lambda^{m_{a},a}\}{ italic_λ start_POSTSUPERSCRIPT 1 , italic_a end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT }: one for the bid and one for the ask. Even if one considers mb=ma=msuperscript𝑚𝑏superscript𝑚𝑎𝑚m^{b}=m^{a}=mitalic_m start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = italic_m start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_m, when estimating intensities on real data, there is no chance that the estimated parameters will coincide between the bid and the ask. However, if the parameters are close and/or if there is no reason to believe that there is a structural asymmetry between the bid and the ask, it makes sense to impose that both sides share a unique set of intensities {λ1,,λm}superscript𝜆1superscript𝜆𝑚\{\lambda^{1},\ldots,\lambda^{m}\}{ italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT }.

In this appendix, we further assume some form of symmetry in liquidity asymmetries: there may be periods when liquidity is higher on one side than the other, but the exact opposite could have happened with the same probability. In mathematical terms, this corresponds to a point-in-time exchangeability assumption. In our Markovian setup, this means that the transition matrix Q𝑄Qitalic_Q of the Markov chain (λtb,λta)tsubscriptsubscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡𝑡(\lambda^{b}_{t},\lambda^{a}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is also that of the Markov chain (λta,λtb)tsubscriptsubscriptsuperscript𝜆𝑎𝑡subscriptsuperscript𝜆𝑏𝑡𝑡(\lambda^{a}_{t},\lambda^{b}_{t})_{t}( italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. These assumptions are essential to build a model where prices are driven by imbalances. In particular, they guarantee that the price process does not drift indefinitely in such a model.

A natural question is of course that of estimating the intensities (or equivalently the diagonal matrix Λ=diag(λ1,,λm)Λdiagsuperscript𝜆1superscript𝜆𝑚\Lambda=\textrm{diag}(\lambda^{1},\ldots,\lambda^{m})roman_Λ = diag ( italic_λ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , italic_λ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT )) and the transition matrix QMm2𝑄subscript𝑀superscript𝑚2Q\in M_{m^{2}}italic_Q ∈ italic_M start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT using a set of RFQs at the bid and at the ask.

The likelihood computed in Section 2.2.1 is of course valid in the specific case we consider here with Λb=Λa=ΛsuperscriptΛ𝑏superscriptΛ𝑎Λ\Lambda^{b}=\Lambda^{a}=\Lambdaroman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT = roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = roman_Λ, but the EM algorithm has to be adapted to take into account the constraints imposed by the symmetry assumptions. The log-likelihood (1) now writes

(Q,Λ|t1,,tN,𝔰1,𝔰N,τ1,,τP+1,s0b,,sPb,s0a,,sPa)𝑄conditionalΛsubscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁subscript𝜏1subscript𝜏𝑃1subscriptsuperscript𝑠𝑏0subscriptsuperscript𝑠𝑏𝑃subscriptsuperscript𝑠𝑎0subscriptsuperscript𝑠𝑎𝑃\displaystyle\mathcal{L}(Q,\Lambda|t_{1},\ldots,t_{N},\mathfrak{s}_{1},\ldots%\mathfrak{s}_{N},\tau_{1},\ldots,\tau_{P+1},s^{b}_{0},\ldots,s^{b}_{P},s^{a}_{%0},\ldots,s^{a}_{P})caligraphic_L ( italic_Q , roman_Λ | italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_τ start_POSTSUBSCRIPT italic_P + 1 end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT )
=\displaystyle==log((π0)(s0b1)m+s0a)+1jbm1jam1kbm1kam(kb,ka)(jb,ja)n~(jb,ja),(kb,ka)log(Q(jb1)m+ja,(kb1)m+ka)subscriptsubscript𝜋0subscriptsuperscript𝑠𝑏01𝑚subscriptsuperscript𝑠𝑎0subscript1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚subscript1subscript𝑘𝑏𝑚1subscript𝑘𝑎𝑚subscript𝑘𝑏subscript𝑘𝑎subscript𝑗𝑏subscript𝑗𝑎superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝑄subscript𝑗𝑏1𝑚subscript𝑗𝑎subscript𝑘𝑏1𝑚subscript𝑘𝑎\displaystyle\log\left((\pi_{0})_{(s^{b}_{0}-1)m+s^{a}_{0}}\right)+\sum_{%\begin{subarray}{c}1\leq j_{b}\leq m\\1\leq j_{a}\leq m\end{subarray}}\sum_{\begin{subarray}{c}1\leq k_{b}\leq m\\1\leq k_{a}\leq m\\(k_{b},k_{a})\neq(j_{b},j_{a})\end{subarray}}\tilde{n}^{(j_{b},j_{a}),(k_{b},k%_{a})}\log(Q_{(j_{b}-1)m+j_{a},(k_{b}-1)m+k_{a}})roman_log ( ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_s start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 ) italic_m + italic_s start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW end_ARG end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT roman_log ( italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
1jbm1jam((1kbm1kam(kb,ka)(jb,ja)Q(jb1)m+ja,(kb1)m+ka)+λjb+λja)T~(jb,ja)subscript1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚subscript1subscript𝑘𝑏𝑚1subscript𝑘𝑎𝑚subscript𝑘𝑏subscript𝑘𝑎subscript𝑗𝑏subscript𝑗𝑎subscript𝑄subscript𝑗𝑏1𝑚subscript𝑗𝑎subscript𝑘𝑏1𝑚subscript𝑘𝑎superscript𝜆subscript𝑗𝑏superscript𝜆subscript𝑗𝑎superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎\displaystyle-\sum_{\begin{subarray}{c}1\leq j_{b}\leq m\\1\leq j_{a}\leq m\end{subarray}}\left(\left(\sum_{\begin{subarray}{c}1\leq k_{%b}\leq m\\1\leq k_{a}\leq m\\(k_{b},k_{a})\neq(j_{b},j_{a})\end{subarray}}Q_{(j_{b}-1)m+j_{a},(k_{b}-1)m+k_%{a}}\right)+\lambda^{j_{b}}+\lambda^{j_{a}}\right)\tilde{T}^{(j_{b},j_{a})}- ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW end_ARG end_POSTSUBSCRIPT ( ( ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT
+1jbm1jamn~(jb,ja)blog(λjb)+1jbm1jamn~(jb,ja)alog(λja)subscript1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚subscriptsuperscript~𝑛𝑏subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑏subscript1subscript𝑗𝑏𝑚1subscript𝑗𝑎𝑚subscriptsuperscript~𝑛𝑎subscript𝑗𝑏subscript𝑗𝑎superscript𝜆subscript𝑗𝑎\displaystyle+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m\\1\leq j_{a}\leq m\end{subarray}}\tilde{n}^{b}_{(j_{b},j_{a})}\log(\lambda^{j_{%b}})+\sum_{\begin{subarray}{c}1\leq j_{b}\leq m\\1\leq j_{a}\leq m\end{subarray}}\tilde{n}^{a}_{(j_{b},j_{a})}\log(\lambda^{j_{%a}})+ ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m end_CELL end_ROW end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT roman_log ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT )

and the matrix Q𝑄Qitalic_Q verifies Q(jb1)m+ja,(kb1)m+ka=Q(ja1)m+jb,(ka1)m+kbsubscript𝑄subscript𝑗𝑏1𝑚subscript𝑗𝑎subscript𝑘𝑏1𝑚subscript𝑘𝑎subscript𝑄subscript𝑗𝑎1𝑚subscript𝑗𝑏subscript𝑘𝑎1𝑚subscript𝑘𝑏Q_{(j_{b}-1)m+j_{a},(k_{b}-1)m+k_{a}}=Q_{(j_{a}-1)m+j_{b},(k_{a}-1)m+k_{b}}italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_Q start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - 1 ) italic_m + italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - 1 ) italic_m + italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT for 1jb,kbmformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏𝑚1\leq j_{b},k_{b}\leq m1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m and 1ja,kamformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎𝑚1\leq j_{a},k_{a}\leq m1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m.

Subsequently, the M𝑀Mitalic_M-step (i.e. the update) is modified and becomes

Λ^j,jk=1m𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[n~(j,k)b]+k=1m𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[n~(k,j)a]k=1m𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[T~(j,k)]+k=1m𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[T~(k,j)]for1jm,formulae-sequencesubscript^Λ𝑗𝑗superscriptsubscript𝑘1𝑚subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛𝑗𝑘𝑏superscriptsubscript𝑘1𝑚subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscriptsubscript~𝑛𝑘𝑗𝑎superscriptsubscript𝑘1𝑚subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇𝑗𝑘superscriptsubscript𝑘1𝑚subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇𝑘𝑗for1𝑗𝑚\widehat{\Lambda}_{j,j}\leftarrow\frac{\sum_{k=1}^{m}\mathbb{E}_{\widehat{%\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N%}}\left[\tilde{n}_{(j,k)}^{b}\right]+\sum_{k=1}^{m}\mathbb{E}_{\widehat{%\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N%}}\left[\tilde{n}_{(k,j)}^{a}\right]}{\sum_{k=1}^{m}\mathbb{E}_{\widehat{%\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N%}}\left[\tilde{T}^{(j,k)}\right]+\sum_{k=1}^{m}\mathbb{E}_{\widehat{\Lambda},%\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N}}\left[%\tilde{T}^{(k,j)}\right]}\quad\text{ for }1\leq j\leq m,over^ start_ARG roman_Λ end_ARG start_POSTSUBSCRIPT italic_j , italic_j end_POSTSUBSCRIPT ← divide start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_j , italic_k ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ] + ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUBSCRIPT ( italic_k , italic_j ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ] end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j , italic_k ) end_POSTSUPERSCRIPT ] + ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_k , italic_j ) end_POSTSUPERSCRIPT ] end_ARG for 1 ≤ italic_j ≤ italic_m ,

and, for 1jb,kbmformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏𝑚1\leq j_{b},k_{b}\leq m1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m and 1ja,kamformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎𝑚1\leq j_{a},k_{a}\leq m1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m with (jb,ja)(kb,ka)subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎(j_{b},j_{a})\neq(k_{b},k_{a})( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ),

Q^(jb1)m+ja,(kb1)m+ka𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[n~(jb,ja),(kb,ka)]+𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[n~(ja,jb),(ka,kb)]𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[T~(jb,ja)]+𝔼Λ^,Q^,t1,tN,𝔰1,𝔰N[T~(ja,jb)]subscript^𝑄subscript𝑗𝑏1𝑚subscript𝑗𝑎subscript𝑘𝑏1𝑚subscript𝑘𝑎subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑛subscript𝑗𝑏subscript𝑗𝑎subscript𝑘𝑏subscript𝑘𝑎subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑛subscript𝑗𝑎subscript𝑗𝑏subscript𝑘𝑎subscript𝑘𝑏subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑏subscript𝑗𝑎subscript𝔼^Λ^𝑄subscript𝑡1subscript𝑡𝑁subscript𝔰1subscript𝔰𝑁delimited-[]superscript~𝑇subscript𝑗𝑎subscript𝑗𝑏\widehat{Q}_{(j_{b}-1)m+j_{a},(k_{b}-1)m+k_{a}}\leftarrow\frac{\mathbb{E}_{%\widehat{\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots%\mathfrak{s}_{N}}\left[\tilde{n}^{(j_{b},j_{a}),(k_{b},k_{a})}\right]\!+\!%\mathbb{E}_{\widehat{\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},%\ldots\mathfrak{s}_{N}}\left[\tilde{n}^{(j_{a},j_{b}),(k_{a},k_{b})}\right]}{%\mathbb{E}_{\widehat{\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},%\ldots\mathfrak{s}_{N}}\left[\tilde{T}^{(j_{b},j_{a})}\right]+\mathbb{E}_{%\widehat{\Lambda},\widehat{Q},t_{1},\ldots t_{N},\mathfrak{s}_{1},\ldots%\mathfrak{s}_{N}}\left[\tilde{T}^{(j_{a},j_{b})}\right]}over^ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT ← divide start_ARG blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] + blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) , ( italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] + blackboard_E start_POSTSUBSCRIPT over^ start_ARG roman_Λ end_ARG , over^ start_ARG italic_Q end_ARG , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ over~ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ] end_ARG

where the expectations are the same as in Section 2.2.2 with Λb^=Λa^=Λ^^superscriptΛ𝑏^superscriptΛ𝑎^Λ\widehat{\Lambda^{b}}=\widehat{\Lambda^{a}}=\widehat{\Lambda}over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG = over^ start_ARG roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG = over^ start_ARG roman_Λ end_ARG.

A.2 A multi-asset extension

In what follows, we consider a set of d𝑑ditalic_d assets and propose a one-factor liquidity model that echoes, in some sense, the CAPM. More precisely, we consider a Markov chain similar to the one used above, but we assume that the intensity process of asset i𝑖iitalic_i is given by

(λti)t=(λti,b,λti,a)t=(βi,bλtb,βi,aλta)t.subscriptsubscriptsuperscript𝜆𝑖𝑡𝑡subscriptsubscriptsuperscript𝜆𝑖𝑏𝑡subscriptsuperscript𝜆𝑖𝑎𝑡𝑡subscriptsuperscript𝛽𝑖𝑏subscriptsuperscript𝜆𝑏𝑡superscript𝛽𝑖𝑎subscriptsuperscript𝜆𝑎𝑡𝑡(\lambda^{i}_{t})_{t}=(\lambda^{i,b}_{t},\lambda^{i,a}_{t})_{t}=(\beta^{i,b}%\lambda^{b}_{t},\beta^{i,a}\lambda^{a}_{t})_{t}.( italic_λ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .

In other words, (λt)t=(λtb,λta)tsubscriptsubscript𝜆𝑡𝑡subscriptsubscriptsuperscript𝜆𝑏𝑡subscriptsuperscript𝜆𝑎𝑡𝑡(\lambda_{t})_{t}=(\lambda^{b}_{t},\lambda^{a}_{t})_{t}( italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT represents an aggregate, while asset-level sensitivities to this aggregate are represented by coefficients (βi,b)isubscriptsuperscript𝛽𝑖𝑏𝑖(\beta^{i,b})_{i}( italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and (βi,a)isubscriptsuperscript𝛽𝑖𝑎𝑖(\beta^{i,a})_{i}( italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.232323For identifiability reasons, we consider the normalization i=1dβi,b=i=1dβi,a=1superscriptsubscript𝑖1𝑑superscript𝛽𝑖𝑏superscriptsubscript𝑖1𝑑superscript𝛽𝑖𝑎1\sum_{i=1}^{d}\beta^{i,b}=\sum_{i=1}^{d}\beta^{i,a}=1∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT = 1.

To compute the likelihood of a sequence of RFQ times t1<<tNsubscript𝑡1subscript𝑡𝑁t_{1}<\ldots<t_{N}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < … < italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT corresponding to RFQs in assets i1,,iNsubscript𝑖1subscript𝑖𝑁i_{1},\ldots,i_{N}italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT and sides 𝔰1,,𝔰Nsubscript𝔰1subscript𝔰𝑁\mathfrak{s}_{1},\ldots,\mathfrak{s}_{N}fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT where the sides are encoded as elements of {b,a}𝑏𝑎\{b,a\}{ italic_b , italic_a } as above, let us introduce two counting processes (NtRFQ,i,b)tsubscriptsubscriptsuperscript𝑁𝑅𝐹𝑄𝑖𝑏𝑡𝑡(N^{RFQ,i,b}_{t})_{t}( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and (NtRFQ,i,a)tsubscriptsubscriptsuperscript𝑁𝑅𝐹𝑄𝑖𝑎𝑡𝑡(N^{RFQ,i,a}_{t})_{t}( italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT for each asset i𝑖iitalic_i, and the function

𝒢:t(𝒢(jb1)ma+ja,(kb1)ma+ka(t))1jb,kbmb,1ja,kama:𝒢maps-to𝑡subscriptsuperscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡formulae-sequence1subscript𝑗𝑏formulae-sequencesubscript𝑘𝑏subscript𝑚𝑏formulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎\mathcal{G}:t\mapsto(\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t%))_{1\leq j_{b},k_{b}\leq m_{b},1\leq j_{a},k_{a}\leq m_{a}}caligraphic_G : italic_t ↦ ( caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ) start_POSTSUBSCRIPT 1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT

where

𝒢(jb1)ma+ja,(kb1)ma+ka(t)=(i,NtRFQ,i,b=0,NtRFQ,i,a=0,λt=(λkb,b,λka,a)|λ0=(λjb,b,λja,a))\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)=\mathbb{P}(\forall i%,N^{RFQ,i,b}_{t}=0,N^{RFQ,i,a}_{t}=0,\lambda_{t}=(\lambda^{k_{b},b},\lambda^{k%_{a},a})|\lambda_{0}=(\lambda^{j_{b},b},\lambda^{j_{a},a}))caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) = blackboard_P ( ∀ italic_i , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )

Using the same reasoning as in Section 2, we obtain for h>00h>0italic_h > 0, 1jb,kbmbformulae-sequence1subscript𝑗𝑏subscript𝑘𝑏subscript𝑚𝑏1\leq j_{b},k_{b}\leq m_{b}1 ≤ italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and 1ja,kamaformulae-sequence1subscript𝑗𝑎subscript𝑘𝑎subscript𝑚𝑎1\leq j_{a},k_{a}\leq m_{a}1 ≤ italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT:

𝒢(jb1)ma+ja,(kb1)ma+ka(t+h)superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡\displaystyle\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t+h)caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t + italic_h )
=\displaystyle==(i,Nt+hRFQ,i,b=0,Nt+hRFQ,i,a=0,λt+h=(λkb,b,λka,a)|λ0=(λjb,b,λja,a))\displaystyle\mathbb{P}(\forall i,N^{RFQ,i,b}_{t+h}=0,N^{RFQ,i,a}_{t+h}=0,%\lambda_{t+h}=(\lambda^{k_{b},b},\lambda^{k_{a},a})|\lambda_{0}=(\lambda^{j_{b%},b},\lambda^{j_{a},a}))blackboard_P ( ∀ italic_i , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==lb=1mbla=1ma(i,Nt+hRFQ,i,b=0,Nt+hRFQ,i,a=0,λt+h=(λkb,b,λka,a),λt=(λlb,b,λla,a)|λ0=(λjb,b,λja,a))\displaystyle\sum_{l_{b}=1}^{m_{b}}\sum_{l_{a}=1}^{m_{a}}\mathbb{P}(\forall i,%N^{RFQ,i,b}_{t+h}=0,N^{RFQ,i,a}_{t+h}=0,\lambda_{t+h}=(\lambda^{k_{b},b},%\lambda^{k_{a},a}),\lambda_{t}=(\lambda^{l_{b},b},\lambda^{l_{a},a})|\lambda_{%0}=(\lambda^{j_{b},b},\lambda^{j_{a},a}))∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_P ( ∀ italic_i , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) | italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==lb=1mbla=1ma𝒢(jb1)ma+ja,(lb1)ma+la(t)(i,Nt+hRFQ,i,b=0,Nt+hRFQ,i,a=0,λt+h=(λkb,b,λka,a)\displaystyle\sum_{l_{b}=1}^{m_{b}}\sum_{l_{a}=1}^{m_{a}}\mathcal{G}^{(j_{b}-1%)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)\mathbb{P}\left(\forall i,N^{RFQ,i,b}_{t+%h}=0,N^{RFQ,i,a}_{t+h}=0,\lambda_{t+h}=(\lambda^{k_{b},b},\lambda^{k_{a},a})\right.∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) blackboard_P ( ∀ italic_i , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t + italic_h end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
|i,NtRFQ,i,b=0,NtRFQ,i,a=0,λt=(λlb,b,λla,a))\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.\Big{%|}\forall i,N^{RFQ,i,b}_{t}=0,N^{RFQ,i,a}_{t}=0,\lambda_{t}=(\lambda^{l_{b},b}%,\lambda^{l_{a},a})\right)| ∀ italic_i , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_N start_POSTSUPERSCRIPT italic_R italic_F italic_Q , italic_i , italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0 , italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT , italic_λ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT ) )
=\displaystyle==𝒢(jb1)ma+ja,(kb1)ma+ka(t)(1+Q(kb1)ma+ka,(kb1)ma+kah+o(h))superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡1subscript𝑄subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑜\displaystyle\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)\left(1%+Q_{(k_{b}-1)m_{a}+k_{a},(k_{b}-1)m_{a}+k_{a}}h+o(h)\right)caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( 1 + italic_Q start_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_h + italic_o ( italic_h ) )
×i=1d(1βi,bλkb,bh+o(h))(1βi,aλka,ah+o(h))\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times\prod_{i=1}^{d}%\left(1-\beta^{i,b}\lambda^{k_{b},b}h+o(h)\right)\left(1-\beta^{i,a}\lambda^{k%_{a},a}h+o(h)\right)× ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( 1 - italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT italic_h + italic_o ( italic_h ) ) ( 1 - italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT italic_h + italic_o ( italic_h ) )
+1lbmb,1lama,(lb,la)(kb,ka)𝒢(jb1)ma+ja,(lb1)ma+la(t)(Q(lb1)ma+la,(kb1)ma+kah+o(h)).subscriptformulae-sequence1subscript𝑙𝑏subscript𝑚𝑏1subscript𝑙𝑎subscript𝑚𝑎subscript𝑙𝑏subscript𝑙𝑎subscript𝑘𝑏subscript𝑘𝑎superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎𝑡subscript𝑄subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑜\displaystyle+\sum_{1\leq l_{b}\leq m_{b},1\leq l_{a}\leq m_{a},(l_{b},l_{a})%\neq(k_{b},k_{a})}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)%\left(Q_{(l_{b}-1)m_{a}+l_{a},(k_{b}-1)m_{a}+k_{a}}h+o(h)\right).+ ∑ start_POSTSUBSCRIPT 1 ≤ italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( italic_Q start_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_h + italic_o ( italic_h ) ) .

This leads to the following differential equation:

ddt𝒢(jb1)ma+ja,(kb1)ma+ka(t)𝑑𝑑𝑡superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡\displaystyle\frac{d\ }{dt}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_%{a}}(t)divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t )
=\displaystyle==𝒢(jb1)ma+ja,(kb1)ma+ka(t)(Q(kb1)ma+ka,(kb1)ma+kai=1dβi,bλkb,bi=1dβi,bλka,a)superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎𝑡subscript𝑄subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎superscriptsubscript𝑖1𝑑superscript𝛽𝑖𝑏superscript𝜆subscript𝑘𝑏𝑏superscriptsubscript𝑖1𝑑superscript𝛽𝑖𝑏superscript𝜆subscript𝑘𝑎𝑎\displaystyle\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(k_{b}-1)m_{a}+k_{a}}(t)\left(Q%_{(k_{b}-1)m_{a}+k_{a},(k_{b}-1)m_{a}+k_{a}}-\sum_{i=1}^{d}\beta^{i,b}\lambda^%{k_{b},b}-\sum_{i=1}^{d}\beta^{i,b}\lambda^{k_{a},a}\right)caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) ( italic_Q start_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_b end_POSTSUPERSCRIPT - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_a end_POSTSUPERSCRIPT )
+1lbmb,1lama,(lb,la)(kb,ka)𝒢(jb1)ma+ja,(lb1)ma+la(t)Q(lb1)ma+la,(kb1)ma+kasubscriptformulae-sequence1subscript𝑙𝑏subscript𝑚𝑏1subscript𝑙𝑎subscript𝑚𝑎subscript𝑙𝑏subscript𝑙𝑎subscript𝑘𝑏subscript𝑘𝑎superscript𝒢subscript𝑗𝑏1subscript𝑚𝑎subscript𝑗𝑎subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎𝑡subscript𝑄subscript𝑙𝑏1subscript𝑚𝑎subscript𝑙𝑎subscript𝑘𝑏1subscript𝑚𝑎subscript𝑘𝑎\displaystyle+\sum_{1\leq l_{b}\leq m_{b},1\leq l_{a}\leq m_{a},(l_{b},l_{a})%\neq(k_{b},k_{a})}\mathcal{G}^{(j_{b}-1)m_{a}+j_{a},(l_{b}-1)m_{a}+l_{a}}(t)Q_%{(l_{b}-1)m_{a}+l_{a},(k_{b}-1)m_{a}+k_{a}}+ ∑ start_POSTSUBSCRIPT 1 ≤ italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 ≤ italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ≠ ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT caligraphic_G start_POSTSUPERSCRIPT ( italic_j start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t ) italic_Q start_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , ( italic_k start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT - 1 ) italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT

which, in matrix form, writes

𝒢(t)=𝒢(t)(Qi=1dβi,bΛbImai=1dβi,aImbΛa).superscript𝒢𝑡𝒢𝑡𝑄superscriptsubscript𝑖1𝑑tensor-productsuperscript𝛽𝑖𝑏superscriptΛ𝑏subscript𝐼subscript𝑚𝑎superscriptsubscript𝑖1𝑑tensor-productsuperscript𝛽𝑖𝑎subscript𝐼subscript𝑚𝑏superscriptΛ𝑎\mathcal{G}^{\prime}(t)=\mathcal{G}(t)\left(Q-\sum_{i=1}^{d}\beta^{i,b}\Lambda%^{b}\otimes I_{m_{a}}-\sum_{i=1}^{d}\beta^{i,a}I_{m_{b}}\otimes\Lambda^{a}%\right).caligraphic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = caligraphic_G ( italic_t ) ( italic_Q - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) .

As 𝒢(0)=Imbma𝒢0subscript𝐼subscript𝑚𝑏subscript𝑚𝑎\mathcal{G}(0)=I_{m_{b}m_{a}}caligraphic_G ( 0 ) = italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT, we conclude that

𝒢(t)=exp((Qi=1dβi,bΛbImai=1dβi,aImbΛa)t)=exp((QΛbImaImbΛa)t)𝒢𝑡𝑄superscriptsubscript𝑖1𝑑tensor-productsuperscript𝛽𝑖𝑏superscriptΛ𝑏subscript𝐼subscript𝑚𝑎superscriptsubscript𝑖1𝑑tensor-productsuperscript𝛽𝑖𝑎subscript𝐼subscript𝑚𝑏superscriptΛ𝑎𝑡𝑄tensor-productsuperscriptΛ𝑏subscript𝐼subscript𝑚𝑎tensor-productsubscript𝐼subscript𝑚𝑏superscriptΛ𝑎𝑡\mathcal{G}(t)=\exp\left(\left(Q-\sum_{i=1}^{d}\beta^{i,b}\Lambda^{b}\otimes I%_{m_{a}}-\sum_{i=1}^{d}\beta^{i,a}I_{m_{b}}\otimes\Lambda^{a}\right)t\right)=%\exp\left(\left(Q-\Lambda^{b}\otimes I_{m_{a}}-I_{m_{b}}\otimes\Lambda^{a}%\right)t\right)caligraphic_G ( italic_t ) = roman_exp ( ( italic_Q - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) italic_t ) = roman_exp ( ( italic_Q - roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ⊗ italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_I start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) italic_t )

thanks to the normalization choice.

If we assume that λ0subscript𝜆0\lambda_{0}italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is distributed according to π0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, then, using the same reasoning as above, the likelihood writes

(Q,Λb,Λa|t1,,tN,i1,iN,𝔰1,𝔰N)𝑄superscriptΛ𝑏conditionalsuperscriptΛ𝑎subscript𝑡1subscript𝑡𝑁subscript𝑖1subscript𝑖𝑁subscript𝔰1subscript𝔰𝑁\displaystyle\mathcal{L}(Q,\Lambda^{b},\Lambda^{a}|t_{1},\ldots,t_{N},i_{1},%\ldots i_{N},\mathfrak{s}_{1},\ldots\mathfrak{s}_{N})caligraphic_L ( italic_Q , roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT , roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT | italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_i start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … fraktur_s start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT )
=\displaystyle==π(n=1Nexp((QΛ~bΛ~a)(tntn1))βin,𝔰nΛ~𝔰n)esuperscript𝜋superscriptsubscriptproduct𝑛1𝑁𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑛subscript𝑡𝑛1superscript𝛽subscript𝑖𝑛subscript𝔰𝑛superscript~Λsubscript𝔰𝑛𝑒\displaystyle\pi^{\prime}\left(\prod_{n=1}^{N}\exp\left(\left(Q-\tilde{\Lambda%}^{b}-\tilde{\Lambda}^{a}\right)(t_{n}-t_{n-1})\right)\beta^{i_{n},\mathfrak{s%}_{n}}\tilde{\Lambda}^{\mathfrak{s}_{n}}\right)eitalic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) italic_β start_POSTSUPERSCRIPT italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_e
=\displaystyle==(i=1d(βi,b)Ki,b)(i=1d(βi,a)Ki,a)π(n=1Nexp((QΛ~bΛ~a)(tntn1))Λ~𝔰n)esuperscriptsubscriptproduct𝑖1𝑑superscriptsuperscript𝛽𝑖𝑏superscript𝐾𝑖𝑏superscriptsubscriptproduct𝑖1𝑑superscriptsuperscript𝛽𝑖𝑎superscript𝐾𝑖𝑎superscript𝜋superscriptsubscriptproduct𝑛1𝑁𝑄superscript~Λ𝑏superscript~Λ𝑎subscript𝑡𝑛subscript𝑡𝑛1superscript~Λsubscript𝔰𝑛𝑒\displaystyle\left(\prod_{i=1}^{d}(\beta^{i,b})^{K^{i,b}}\right)\left(\prod_{i%=1}^{d}(\beta^{i,a})^{K^{i,a}}\right)\pi^{\prime}\left(\prod_{n=1}^{N}\exp%\left(\left(Q-\tilde{\Lambda}^{b}-\tilde{\Lambda}^{a}\right)(t_{n}-t_{n-1})%\right)\tilde{\Lambda}^{\mathfrak{s}_{n}}\right)e( ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) ( ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) italic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_exp ( ( italic_Q - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ( italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) ) over~ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_e

where Ki,b=Card({n,in=i,𝔰n=b})K^{i,b}=\text{Card}(\{n,i_{n}=i,\mathfrak{s}_{n}=b\})italic_K start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT = Card ( { italic_n , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_i , fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_b } ) and Ki,a=Card({n,in=i,𝔰n=a})K^{i,a}=\text{Card}(\{n,i_{n}=i,\mathfrak{s}_{n}=a\})italic_K start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT = Card ( { italic_n , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_i , fraktur_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a } ).

From this expression we deduce that (i) we can merge RFQs at the bid across assets and RFQs at the ask across assets to estimate the parameters of Q𝑄Qitalic_Q, ΛbsuperscriptΛ𝑏\Lambda^{b}roman_Λ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT and ΛasuperscriptΛ𝑎\Lambda^{a}roman_Λ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT using the EM algorithm of Section 2.2 or that of Appendix A.1, and (ii) we can separately estimate the β𝛽\betaitalic_β coefficients. Regarding the former, our EM algorithms can be used on merged data. The latter (the estimation of the sensitivities) is trivial: maximizing i=1d(βi,b)Ki,bsuperscriptsubscriptproduct𝑖1𝑑superscriptsuperscript𝛽𝑖𝑏superscript𝐾𝑖𝑏\prod_{i=1}^{d}(\beta^{i,b})^{K^{i,b}}∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT subject to i=1dβi,b=1superscriptsubscript𝑖1𝑑superscript𝛽𝑖𝑏1\sum_{i=1}^{d}\beta^{i,b}=1∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT = 1 indeed boils down to setting βi,bsuperscript𝛽𝑖𝑏\beta^{i,b}italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT proportional to Ki,bsuperscript𝐾𝑖𝑏K^{i,b}italic_K start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT, i.e. βi,b=Ki,bj=1dKj,bsuperscript𝛽𝑖𝑏superscript𝐾𝑖𝑏superscriptsubscript𝑗1𝑑superscript𝐾𝑗𝑏\beta^{i,b}=\frac{K^{i,b}}{\sum_{j=1}^{d}K^{j,b}}italic_β start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT = divide start_ARG italic_K start_POSTSUPERSCRIPT italic_i , italic_b end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT italic_j , italic_b end_POSTSUPERSCRIPT end_ARG – and similarly we obtain βi,a=Ki,aj=1dKj,asuperscript𝛽𝑖𝑎superscript𝐾𝑖𝑎superscriptsubscript𝑗1𝑑superscript𝐾𝑗𝑎\beta^{i,a}=\frac{K^{i,a}}{\sum_{j=1}^{d}K^{j,a}}italic_β start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT = divide start_ARG italic_K start_POSTSUPERSCRIPT italic_i , italic_a end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT italic_j , italic_a end_POSTSUPERSCRIPT end_ARG.

Liquidity Dynamics in RFQ Markets and Impact on Pricing (2024)
Top Articles
Latest Posts
Article information

Author: Jeremiah Abshire

Last Updated:

Views: 5774

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Jeremiah Abshire

Birthday: 1993-09-14

Address: Apt. 425 92748 Jannie Centers, Port Nikitaville, VT 82110

Phone: +8096210939894

Job: Lead Healthcare Manager

Hobby: Watching movies, Watching movies, Knapping, LARPing, Coffee roasting, Lacemaking, Gaming

Introduction: My name is Jeremiah Abshire, I am a outstanding, kind, clever, hilarious, curious, hilarious, outstanding person who loves writing and wants to share my knowledge and understanding with you.